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Abstract

A major focus of the Military Health System is to provide efficient and timely medical

evacuation (MEDEVAC) to battlefield casualties. Medical planners are responsible

for developing dispatching policies that dictate how aerial military MEDEVAC units

are utilized during major combat operations. The objective of this research is to de-

termine how to optimally dispatch MEDEVAC units in response to 9-line MEDEVAC

requests to maximize MEDEVAC system performance. A discounted, infinite horizon

Markov decision process (MDP) model is developed to examine the MEDEVAC dis-

patching problem. The MDP model allows the dispatching authority to accept, reject,

or queue incoming requests based on the request’s classification (i.e., zone and prece-

dence level) and the state of the MEDEVAC system. Rejected requests are rerouted

to be serviced by other, non-medical military organizations in theater. Performance

is measured in terms of casualty survivability rather than a response time threshold

since survival probability more accurately represents casualty outcomes. A represen-

tative planning scenario based on contingency operations in southern Afghanistan

is utilized to investigate the differences between the optimal dispatching policy and

three practitioner-friendly myopic baseline policies. Two computational experiments,

a two-level, five-factor screening design and a subsequent three-level, three-factor

full factorial design, are conducted to examine the impact of selected MEDEVAC

problem features on the optimal policy and the system level performance measure.

Results indicate that dispatching the closest available MEDEVAC unit is not always

optimal and that dispatching MEDEVAC units considering the precedence level of

requests and the locations of busy MEDEVAC units increases the performance of the

MEDEVAC system. These results inform the development and implementation of
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MEDEVAC tactics, techniques, and procedures by military medical planners. More-

over, an open question exists concerning the best exact solution approach for solving

Markov decision problems due to recent advances in performance by commercial lin-

ear programming (LP) solvers. An analysis of solution approaches for the MEDEVAC

dispatching problem reveals that the policy iteration algorithm substantially outper-

forms the LP algorithms executed by CPLEX 12.6 in regards to computational effort.

This result supports the claim that policy iteration remains the superlative solution

algorithm for exactly solving computationally tractable Markov decision problems.

Keywords: Markov decision processes, medical evacuation, admission control,

queueing, priority dispatching, policy iteration, and linear programming comparison
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USING MARKOV DECISION PROCESSES WITH HETEROGENEOUS

QUEUEING SYSTEMS TO EXAMINE MILITARY MEDEVAC DISPATCHING

POLICIES

I. Introduction

The primary objective of a deployed military emergency medical services (EMS)

system is to successfully evacuate casualties from the battlefield in a timely man-

ner. Casualty evacuation (CASEVAC) and medical evacuation (MEDEVAC) are the

two main options available for transporting combat casualties to a medical treat-

ment facility (MTF). CASEVAC refers to the transport of casualties to an MTF via

non-medical vehicles or aircraft without en route medical care by onboard medical

professionals. Casualties transported via CASEVAC may not receive the necessary

medical care or be transported to the appropriate MTF. As such, MEDEVAC is the

more preferred and primary method of transporting combat casualties. MEDEVAC

refers to the transport of casualties to an appropriate MTF via standardized medical

evacuation platforms with onboard medical professionals who are equipped to provide

en route medical care and emergency medical intervention (Department of the Army,

2014).

While MEDEVAC operations utilize several different types of evacuation plat-

forms, this thesis focuses on the aerial aspect of MEDEVAC operations (i.e., aeromed-

ical helicopter operations). Helicopters have the capability and flexibility to fly di-

rectly to a predetermined casualty collection point (CCP), meeting battlefield casu-

alties when they are at their most vulnerable and critical stages, landing in an area

where no other platform (e.g., ground vehicle or fixed-wing aircraft) could, or utiliz-
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ing a rescue hoist to lift casualties to the helicopter. After securing the casualties,

helicopters can fly directly to dedicated trauma centers or hospitals unencumbered by

roads with speeds often exceeding 150 miles per hour, all while providing definitive

en route care from trained and highly skilled medics (O’Shea, 2011). These helicopter

capabilities greatly contribute to recent increases in casualty survivability rates.

Helicopter ambulances were first introduced in the military during the Korean

conflict and immediately became a high visibility asset of the MEDEVAC system.

By the end of the Vietnam War, the capabilities (i.e., speed and versatility) of heli-

copters in austere conditions far exceeded the capabilities of ground platforms. The

ability to travel across terrain in remote areas not accessible to ground vehicles makes

helicopters well suited for MEDEVAC operations (De Lorenzo, 2003; Clarke & Davis,

2012). The United States Army operates HH-60M helicopters specifically designed

for the MEDEVAC mission. HH-60M helicopters come equipped with the necessary

resources (e.g., oxygen generator, integrated EKG machine, electronically controlled

litters, built-in external hoist, and an infrared system that can locate patients by

their body heat) to give medical personnel the ability to simultaneously treat and

transport casualties from a CCP to an appropriate MTF. The urgency of the MEDE-

VAC mission is critical to the survivability of battlefield casualties and the HH-60M

helicopter has proved to be advantageous to the Army with its ability to launch in

less than seven minutes (O’Shea, 2011). Eastridge et al. (2012) report that the sur-

vivability of combat casualties has continued to increase over time since World War

II (WWII). Approximately 80% of casualties occurring on the battlefield survived in

WWII, while 84% survived during the Vietnam War. An increase to 90% casualty

survivability was observed in the continuous decade of war between 2001-2011. The

improved casualty rates are attributed to improvements in the versatility and speed of

MEDEVAC helicopters and the resulting decrease in the time required for casualties

2



to receive proper medical care (De Lorenzo, 2003).

Military medical planners are responsible for designing deployed MEDEVAC sys-

tems. An effective and efficient MEDEVAC system boosts esprit de corps of deployed

military personnel, who understand that rapid and quality care will be provided if they

are injured in combat (Department of the Army, 2014). Important decisions include

determining where to locate MEDEVAC units and MTFs, identifying a MEDEVAC

dispatching policy, and recognizing when redeployment of aeromedical helicopters is

necessary and possible. The location of MEDEVAC units is usually determined while

considering two objectives: maximizing coverage and minimizing response time sub-

ject to logistical, resource, and force protection constraints. Deciding which MEDE-

VAC unit to dispatch to a given service request is a vital aspect of any EMS, including

a MEDEVAC system, and is the primary focus of this thesis. The military often de-

faults to a myopic dispatching policy wherein the closest available MEDEVAC unit

is dispatched to retrieve combat casualties from a CCP regardless of the request’s

evacuation precedence category (e.g., Priority I - Urgent, Priority II - Priority, and

Priority III - Routine). Redeployment of MEDEVAC units prior to returning to their

originating base is possible but poses challenges due to the numerous resource and

availability requirements (e.g., refueling, resupply, and armed escort). These reasons

also make temporary relocation of idle MEDEVAC units uncommon within a theater

of operations (Rettke et al., 2016).

This thesis examines the MEDEVAC dispatching problem wherein a dispatch-

ing authority must decide which MEDEVAC unit to dispatch to a particular 9-line

MEDEVAC request. The location of MTFs and MEDEVAC assets are known and

all MEDEVAC helicopters are assumed to have the capability to meet the mission

requirements of any 9-line MEDEVAC request. Redeployment is not considered. The

reported dispatch policy is based on the location and status of MEDEVAC units, the

3



location of the casualty event, and the evacuation precedence category of the casualty

event.

An infinite horizon, discounted Markov decision process (MDP) model is formu-

lated to determine how to optimally dispatch MEDEVAC helicopters to casualty

events occurring in combat to maximize the expected total discounted reward at-

tained by the system. A computational example is applied to a MEDEVAC system

in Afghanistan in support of combat operations. Comparisons are made between the

myopic policy that is typically utilized in practice and the optimal policy derived

from the formulated MDP model.

An important difference between this thesis and other papers in this research area

is the incorporation of admission control and queueing. Admission control allows

the dispatching authority to observe the current state of the MEDEVAC system

before making the decision to accept or reject an incoming request. This gives the

dispatching authority the power to reject incoming requests, reserving MEDEVAC

units for higher precedence requests instead of satisfying all requests for service. The

rejected requests are not simply discarded; rather, they are redirected to another

servicing agency to be serviced (i.e., CASEVAC). If the dispatch authority allows

a request to enter the MEDEVAC system but all MEDEVAC units are currently

servicing other requests, the entering request will be allocated to a queue based on

its precedence level and zone. Once a request has entered the system, it will be

serviced; however, the dispatching authority dictates which available MEDEVAC unit

will service each request in the system, regardless of when the request entered the

system. For example, an urgent request will be serviced before a routine request

regardless of the order in which they entered the system. It is important to note

that MEDEVAC units will not interrupt service to a request in the case of a higher

precedence request arriving. Once a MEDEVAC unit is assigned a specific request,
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it will be considered unavailable until it completes the service of that request.

The remainder of this thesis is organized as follows: Chapter II provides a review

of research relating to MEDEVAC systems, Chapter III presents a description of

the MEDEVAC dispatching problem, Chapter IV describes the MDP formulation

developed to determine an optimal MEDEVAC dispatch policy, and Chapter V covers

an application of the formulated MDP based on a representative scenario in southern

Afghanistan. Chapter VI concludes the thesis and proposes several directions for

future research.
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II. Literature Review

For nearly half a century, research has been conducted on optimizing both civilian

and military emergency medical services (EMS) response systems. The main features

of this research include determining the location of servers; dictating the number of

servers per location, the server dispatch policy, and the size and number of response

zones (if a partitioning strategy for the service area is implemented); identifying

which performance measure to focus on as the objective: response time thresholds

(RTTs) or patient survivability rates; and recognizing if and when server relocation is

necessary due to either a service completion or an incoming service request. Another

complicating feature concerns the location of hospitals. In research examining civilian

EMS systems the locations of hospitals are usually given as fixed; however, in some

military planning contexts the medical treatment facility (MTF) locations are not

given. Military medical planners must decide where to best place MTF locations when

designing a military medical evacuation (MEDEVAC) system (Rettke et al., 2016).

Operations research (OR) methods have been a popular choice amongst researchers

when examining EMS systems. Applied OR methods include stochastic modeling,

queueing, discrete optimization, and simulation modeling (Green & Kolesar, 2004).

Research on EMS operations can be traced back to the late 1960s and early

1970s. The research conducted in this field primarily focuses on the civilian sector

and examines characteristics such as the optimal location (Bianchi & Church, 1988;

Daskin & Stern, 1981; Jarvis, 1975), allocation (Berlin & Liebman, 1974; Baker et al.,

1989; Hall, 1972), dispatch (Ignall et al., 1982; Swersey, 1982; Green & Kolesar, 1984),

and relocation of emergency vehicles (Berman, 1981; Kolesar & Walker, 1974; Chaiken

& Larson, 1972) to enhance the performance of the EMS system. While the goal of

most OR research is to aid decision makers, implementing published models does not

occur as frequently as one might hope. However, this does not seem to be the case
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with emergency response systems research. Green & Kolesar (2004) give an account

of how emergency service management research has impacted emergency response

systems. Despite the substantial amount of research conducted on improving the

performance of civilian EMS systems, little research exists seeking to improve the

performance of military EMS (i.e., MEDEVAC) systems.

The research presented in this thesis examines the optimal dispatch of military

EMS vehicles (i.e., HH-60M MEDEVAC helicopters) to prioritized requests for ser-

vice. Consideration of the precedence category (e.g., Priority I - Urgent, Priority

II - Priority, and Priority III - Routine) is important. A substantial amount of re-

search seeks to improve the overall performance of EMS system, but most research

endeavors do not account for the precedence of the call (Bandara et al., 2014). When

the precedence of the call is not considered, the default dispatching rule sends the

closest available emergency response vehicle to satisfy required service requests with

no regard as to how that specific vehicle’s absence impacts the overall EMS system.

Sending the closest available vehicle to a service request regardless of other factors

(e.g., precedence, or severity) is commonly referred to as a myopic policy. Many

researchers (Carter et al., 1972; Nicholl et al., 1999; Kuisma et al., 2004) show that

myopic policies tend to be suboptimal. Incorporating precedence categories into the

construction of dispatching polices can ultimately lead to more lives being saved on

the battlefield.

Unlike previous work in this area, admission control and prioritized queueing are

explicitly accounted for when formulating the Markov decision process (MDP) model

of the dispatching problem. Descriptive queueing systems model a wide range of

phenomena and are quite effective in predicting and evaluating the performance of an

existing system (Stidham & Weber, 1993). The formulation and analysis of queueing

system models help improve the design of the system being studied. Controlled
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queueing systems consist of three components: controllers, queues, and servers. The

absence of a system controller (i.e., the MEDEVAC dispatching authority) can lead

to erratic system behavior with periods of long queues followed by periods where

servers remain idle (Puterman, 1994). Admission control allows the system controller

to observe the current state of the system when a call (i.e., a 9-line MEDEVAC

request) arrives and on this basis decide whether to admit the call to the eligible job

queue. Admission control offers the possibility of significantly improving performance

as compared to state-independent rules (Efrosinin, 2004). If a call is admitted, it will

eventually receive service while those rejected never enter the system. Queueing

models have been utilized in a variety of applications. See Stidham (2002) for a

survey of work that has significantly contributed to the queueing theory field and see

Stidham & Weber (1993) for a survey of numerous models for the optimal control

of networks of queues with a focus on optimal control policies and Markov decision

theory.

Typically, optimization problems for controlled queueing systems are easier to han-

dle when they are modeled in discrete time rather than continuous time (Efrosinin,

2004). Uniformization can be applied to a continuous-time MDP (CTMDP) model

to obtain a model with constant transition rates so that results and algorithms for

discrete-time discounted models may be applied directly (Puterman, 1994). More de-

tails on how the MEDEVAC system can be converted from a continuous-time problem

to a discrete-time problem will be discussed in the methodology section. The pro-

cess of converting continuous-time problems to discrete-time problems has been well

established and can be seen in the works of Rosberg et al. (1982), Lippman (1975),

and Serfozo (1979). It is also important to recognize that the optimal policies result-

ing for continuous and discrete time problems are equivalent (Puterman, 1994). The

controlled queueing system presented in this thesis is comprised of prioritized queues
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with heterogeneous servers modeled as a MDP due to the appropriate choices for the

control sets and state spaces. The MEDEVAC units are considered heterogeneous

servers due to the different service/response times of incoming 9-line MEDEVAC re-

quests. For example, a MEDEVAC unit will have a different service/response time for

a zone one 9-line MEDEVAC request as compared to a zone four 9-line MEDEVAC

request.

Another key feature in EMS system research is the optimality criterion. The

optimality criterion for the dispatching problem is based on the selection of the per-

formance measure. It is important to select an appropriate EMS performance measure

because it dictates how the EMS system’s resources are utilized and hence directly

impacts the patient survivability rate. The vast majority of EMS systems measure

performance according to an RTT (McLay & Mayorga, 2010). RTT is commonly

referred to as the number (or fraction) of calls that can be serviced within a prede-

termined and fixed time frame. A call must be serviced within its stated RTT to be

considered covered. RTTs are usually preferred over other types of measures related

to the outcome of a patient because they are easier to evaluate and the data is readily

available. There is not an officially adopted standard for RTT, but most urban areas

in civilian EMS systems require calls to be serviced within eight minutes and fifty-nine

seconds (8:59) with at least a 90 percent compliance rate (Fitch & Griffiths, 2005).

That is, an EMS system must respond to at least 90 percent of service requests within

the given RTT of 8:59. Williams (2005) showed that of the 200 most populated cities

in America, over three quarters of civilian EMS system respondents follow a standard

of 8:59 or less. Unfortunately, a military EMS system would not be able to respond

to urgent requests within 8:59 due to the dispersed disposition of forces in combat,

distances that must be traveled, and inherent combat environment.

In 2009, Secretary of Defense Robert Gates mandated that the United States
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MEDEVAC system follow what is colloquially known as the Golden-hour Rule. The

golden-hour rule requires delivery of battlefield casualties to an appropriate MTF

within one hour of a 9-line MEDEVAC request (Olson et al., 2013). These RTTs are

often employed as system performance measures for life-threatening (i.e.,urgent) calls

in both the civilian and military EMS systems, respectively. While RTTs seem to

have many benefits, one common criticism relates to how well patient survivability

rates (the underlining measure to be maximized in EMS systems) are captured when

utilizing RTTs. For example, according to the commonly used civilian EMS system

RTT of 8:59, a call is considered to be covered if the response time is within 8:59,

but any response time greater than 8:59 (e.g., nine minutes) would not be considered

covered. Fitch (2005) suggests that there is not a statistically significant difference

in casualty survivability rates between these cases.

Another performance measure that has been utilized for the optimality criterion

is patient survivability rates. Recent research suggests that performance measures

based on patient survivability provide better results when compared to RTTs (Pons

& Markovchick, 2002; Knight et al., 2012; Erkut et al., 2008). However, estimating

patient survivability tends to be a difficult task due to the lack of available data

(McLay & Mayorga, 2010). Another challenge associated with patient survivability

is defining when it actually occurs. For battlefield casualties, a casualty is usually

considered “survived” once the individual is discharged from the military medical

system. The problem with this definition is that a casualty may not be discharged

for several months and can transfer to different medical facilities and locations while

being treated, making the task of tracking casualty survivability tedious and difficult

(Rettke et al., 2016). Even with these challenges, many researches (McLay & May-

orga, 2010; Bandara et al., 2012; Mayorga et al., 2013; Bandara et al., 2014) utilize

patient survivability as the performance measure in EMS systems. Their results sug-
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gest that utilizing patient survivability is better suited for determining the number of

patients that survive and ultimately helps in increasing the survivability of patients.

As such, one of the objectives of this thesis is to implement optimal dispatching

policies for MEDEVAC systems that maximize the probability of casualty survivabil-

ity with the inclusion of the degree of severity (e.g., urgent, priority, and routine) of

the request. Similar to Erkut et al. (2008), this thesis applies a survivability function

that is monotonically decreasing in response time to model the outcome of casual-

ties. As noted before, one of the primary challenges of using patient survivability as

the performance measure is obtaining empirical data to support the functional form.

Research conducted by Eastridge et al. (2012) gives an extensive account of statistics

associated with combat related deaths, but unfortunately the response times related

to the deaths are not documented. The lack of response time data in Eastridge et al.

(2012) research makes it unlikely to develop a survivability function that has a high

level of confidence. Although Feero et al. (1995) give an account of EMS response

times in relation to trauma patients to study how they affect survivability, their re-

search focuses on civilian EMS systems wherein response times are typically under

eight minutes. The time it takes MEDEVAC units to transport battlefield casualties

to an appropriate MTF is typically much longer than civilian EMS response times

due to the fact of MEDEVACs having to travel significantly further than civilian EMS

units (Rettke et al., 2016). The current MEDEVAC response time goal, as mandated

by Secretary of Defense Gates in 2009, is to successfully respond and transport an

urgent 9-line MEDEVAC request to the necessary medical facility within 60 minutes

of being notified of the 9-line MEDEVAC request (Garrett, 2013). EMS systems of-

ten do not consider more than three precedence categories due to the fact that these

classifications need to be made in a matter of seconds (Bandara et al., 2012). This

thesis focuses on the three primary evacuation precedence categories as applied in the
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United States Army: urgent, priority, and routine. The RTTs for these evacuation

precedence categories (i.e., 60 minutes, 240 minutes, and 24 hours, respectively; De-

partment of the Army (2014)) are utilized in the development of the casualty outcome

functions.

Bandara et al. (2012) describe research where the probability of patients surviving

in EMS systems is greatly enhanced if the precedence category is considered when

deciding which emergency response vehicle to dispatch. A discounted, infinite horizon

MDP model is formulated and analyzed by Bandara et al. (2012) in which two types

of calls (i.e., life-threatening and non life-threatening) are prioritized according to the

urgency of the call. The results indicate sending the closest unit available, regardless

of call precedence, is not always optimal. The analysis recommends sending the

closest available (i.e., idle) unit when life-threatening calls are submitted and the next

closest unit when non life-threatening calls are submitted, regardless of the order the

calls arrived. The optimal policy for life-threatening calls is intuitive because faster

response times result in a higher probability of patient survivability. An ordered list of

which units to dispatch is created for non life-threatening calls. This study highlights

that an optimal dispatching policy may recommend sending a more distant vehicle to

service a less urgent call if closer units are more likely to receive life-threatening calls.

This policy essentially rations closer units in anticipation of a more urgent request.

Increasing the number of zones and EMS units may make the results less intuitive, but

EMS systems still can benefit from the implementation of an optimal policy versus

a myopic approach. It is observed that many lives can be saved without increasing

the cost by implementing the optimal policy. Bandara et al. (2014) also consider the

severity level of incoming calls when implementing dispatch policies. The authors

develop a simulation model to evaluate how each dispatch policy affects the overall

performance of EMS systems. Their model also measures performance in terms of the
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probability of patient survivability because it more accurately reflects the outcome of

patients. Several examples with different response strategies are evaluated, and the

recorded results are similar to those found in Bandara et al. (2012), which indicate

that dispatching the closest vehicle is not always the optimal action. Bandara et al.

(2014) find that dispatching vehicles based on the urgency of the calls ultimately leads

to an increase in the average survival probability of patients. Utilizing these results,

the authors develop an easy-to-implement heuristic algorithm that can be applied to

large-scale EMS systems.

Mayorga et al. (2013) also examine dispatching policies for EMS systems wherein

the performance is measured in terms of patient survival probability. Before com-

paring the performance of different dispatching policies via a simulation model, the

authors determine the number, size, and location of response districts by utilizing a

constructive heuristic that incorporates adjusted expected coverage. Their research

is the first to address the joint problem of finding appropriate dispatching decisions

and response districts for both intra-district and inter-district situations. An intra-

district policy refers to how calls are managed when there is at least one available

emergency unit within the district, whereas an inter-district policy refers to how calls

should be answered in the event that no emergency units are available within the

district at the time the call occurs. Two types of dispatching policies are consid-

ered for intra-district situations: a myopic policy (i.e., the closest available vehicle

services the call) and a heuristic policy developed by Bandara et al. (2014). While

myopic policies are generally practiced by many EMS systems, the heuristic policy

Bandara et al. (2014) developed helps balance the workload of emergency units and

incorporates the urgency of calls when making dispatching decisions, which has been

proven to increase patient survivability rates. Two different policies are considered

for the inter-district situations. The first policy assumes that EMS resources (e.g.,
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fire engines, ambulances, and police) from other counties will assist in servicing calls

when all available ambulance units within the district are unavailable. The second

policy is to send ambulances from other districts to service calls when all ambulances

within the district are busy. The second policy utilizes a preference list of ambulances

to cross districts and is constructed by applying the heuristic proposed by Bandara

et al. (2014). The results from this work indicate that integrated districting and dis-

patching policies are a vital aspect in increasing the probability of survivability for

patients.

McLay & Mayorga (2013b) formulate an MDP model to determine how to dis-

patch EMS units to requests categorized by an evacuation precedence in an optimal

manner given that dispatch authorities make errors in correctly categorizing the true

urgency of each request. Unlike Mayorga et al. (2013) and Bandara et al. (2012),

McLay & Mayorga (2013b) focus on the evacuation precedence of patients with an

objective of maximizing the long-run average utility of the system while considering

the possibility of patient classification errors. The authors utilize an RTT as the op-

timality criterion versus a performance measure based on patient survivability. They

also consider over-responding and under-responding to perceived patient risk when

classification errors exist. McLay & Mayorga (2013b) find that dispatching the closest

ambulance to service incoming calls, regardless of the call precedence, is not always

best. The authors also note that over-responding is preferred when there is a high rate

of classification errors while under-responding is preferred when there is a low rate of

classification errors. McLay & Mayorga (2013a) propose a constrained variant of the

Markov decision problem introduced in McLay & Mayorga (2013b) and formulate an

equity-constrained linear programming model to solve the constrained problem. The

authors examine how dispatching strategies impact server-to-customer systems (i.e.,

an EMS system) given a set of equity constraints. Four separate equity measures
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are considered, two of which consider equity from the server perspective and two of

which consider equity from the customer perspective. Their objective is to determine

an optimal dispatching policy for balancing equity and efficiency when dispatching

distinguishable servers to prioritized customers in service-to-customer systems that

maximizes the long-run average customer utility. Results indicate that when either

the equity of servers or customers is considered then the equity for both customers

and servers is simultaneously improved.

EMS research exists that focuses specifically on military MEDEVAC systems. Zeto

et al. (2006) develop a goal programming model that seeks to maximize the aggregate

expected demands covered and minimize the spare capacities of air ambulances. The

authors leverage Alsalloum & Rand (2006), examining both the problems of resource

allocation and coverage in a three-phased approach. In the first phase, they charac-

terize the demand for MEDEVAC missions using a multivariate hierarchical cluster

analysis. In the second phase, they then estimate the parameters of the model via

a Monte Carlo simulation. In the third phase, they utilize a bi-criteria model to

emplace the minimum number of required aircraft at each location to maximize the

probability of meeting the MEDEVAC demand in the Afghanistan theater. Bastian

et al. (2012) investigate the capabilities required for MEDEVAC aircraft platforms

to successfully perform the necessary duties and provide coverage within a brigade

operating space. The authors develop a decision support tool that military medical

planners can utilize to analyze the risk associated with different MEDEVAC strate-

gies. Bouma (2005) develops a MEDEVAC and treatment capability optimization

model that assists in the redistribution, realignment, and restructuring of medical

materials and resources to help meet requirements in the area of operations. Fulton

et al. (2009) evaluate the planning factors and rules of allocation associated with

Army air ambulance companies. Military medical planners typically use the rules of
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allocation, which are based on strategic planning documents, to estimate the num-

ber of MEDEVAC units required for tactical and operational scenarios. The authors

quantitatively analyze different rules through a Monte Carlo simulation and record

the impact that they have on major combat operations. The results indicate that

0.4 aircraft per admission would be a reasonable planning factor. Finkbeiner (2013)

proposes a hybrid discrete-event simulation and queueing approach to identify the

minimum number of aircraft needed to reach a predetermined level of aeromedical

evacuation. An integer programing model is subsequently utilized to determine where

to locate helicopters within the area of coverage. Sundstrom et al. (1996) incorporate

linear programming techniques to develop a model based on the probabilistic loca-

tion set-covering problem that provides the required numbers of MEDEVAC assets

needed as well as the optimal positioning of those assets to ensure orderly transport

of battlefield casualties to an appropriate medical facility.

The allocation of MEDEVAC units during steady-state combat operations is stud-

ied by Fulton et al. (2010) and Bastian (2010). Fulton et al. (2010) formulate a

stochastic optimization model that manages the locations of deployable military hos-

pitals, hospital beds, and both aerial and ground MEDEVAC units prior to the re-

ception of a 9-line MEDEVAC request. Their model uses an objective of minimizing

the total travel time, which is weighted by the urgency level of the casualty, from

the POI to an appropriate MTF. The weights associated with the urgency levels of

casualties are derived from historical data of patient injury severity scores collected

from Operation Iraqi Freedom (OIF) combat operations. Bastian (2010) formulates

a stochastic optimization goal programming model to meet three separate objectives:

maximize the coverage of theater-wide casualty demand in Afghanistan, minimize the

spare capacity of MEDEVAC units, and minimize the maximal MTF evacuation site

vulnerability to enemy attack.
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Keneally et al. (2016) examine MEDEVAC dispatch policies in the Afghanistan

theater via an MDP model. The authors assume that each service call arrives sequen-

tially and the locations of each service center are predetermined. Their work classifies

service calls into three evacuation precedence categories: urgent, priority, and routine.

They consider the possibility than an armed escort may be required to accompany

the MEDEVAC unit. The authors utilize a reward function based off of RTT and

conduct computational experiments wherein MEDEVAC units operate in support of

Operation Enduring Freedom (OEF). The results highlight that the myopic policy

(i.e., the default policy in practice) does not always lead to the optimal dispatching

strategy. Grannan et al. (2015) develop a binary linear programming (BLP) model to

determine where to locate and how to dispatch multiple types of military MEDEVAC

air assets. A spatial queuing approximation model provides inputs to the BLP model.

The BLP model incorporates the precedence of each service call to maintain a high

likelihood of survival for the most urgent casualties. The overall objective is to max-

imize the proportion of high-precedence calls responded to within a pre-determined

RTT.

Rettke et al. (2016) formulate an MDP model to examine the MEDEVAC dis-

patching problem. The problem instance size in this study is too large for an exact

dynamic programming solution model, so the authors employ approximate dynamic

programming (ADP) techniques to determine an optimal dispatch policy. The com-

putational experiments in this study indicate that their ADP generated policy is

nearly 31% better than the myopic policy. Military medical planners can use these

results to improve existing MEDEVAC tactics and techniques. Lejeune & Margot

(2016) propose a MEDEVAC model that considers endogenous uncertainty in the de-

livery times of casualties. The objective of their model is to provide prompt medical

treatment and evacuation to soldiers injured in combat. The model determines where
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to locate MEDEVAC units and MTFs. Moreover, it helps the dispatch authority in

determining which helicopters to dispatch and which MTF each call should report

to. Results indicate a reduction in battlefield deaths due to an increase in timely

treatment to combat casualties when compared to a myopic policy.
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III. Problem Description

One of the primary missions of the Army Health System (AHS) is to provide

medical evacuation (MEDEVAC) across a wide range of military operations. The

dedicated Army helicopters (i.e., rotary-wing aircraft or air ambulances) utilized in

MEDEVAC missions are under the command of the general support aviation battal-

ion (GSAB). Any use of air ambulances must first be coordinated with the supporting

GSAB to ensure synchronized evacuation procedures are executed. The GSAB man-

ages all activities related to the execution of aerial operations and serves as the pri-

mary decision-making authority for the military MEDEVAC system (Department of

the Army, 2014). An Army aeromedical evacuation officer (AEO) that works within

the GSAB acts as the MEDEVAC dispatching authority in a deployed military emer-

gency medical service (EMS) system (Fish, 2014). AEOs direct the use of medical

aircraft, personnel, and equipment in support of operational and strategic medical

evacuations within a theater of operations.

When a casualty event occurs and a 9-line MEDEVAC request is submitted, the

AEO must make a decision quickly as to which MEDEVAC unit (if any) to dispatch.

The casualty survivability rate will decrease if there are delays in decision making. To

complicate matters further, there are many situations where MEDEVAC units require

a team of armed helicopters to escort them to the casualty site due to high threat level

conditions (e.g., enemy troops in the area). Armed escort requirements can potentially

increase the overall response time, which ultimately decreases the chances of casualties

surviving. Therefore, it is vital that the GSAB implements a dispatching policy that

results in rapid and quality transport of life-threatening battlefield casualties from

the point-of-injury (POI) to the nearest, most appropriate MTF. The procedures

outlined in the Army’s Medical Evacuation Field Manual (Department of the Army,

2014) and the graphical representations that Keneally et al. (2016) and Rettke et al.
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(2016) offer in their problem descriptions are utilized as a basis for the MEDEVAC

mission timeline depicted in Figure 1.

Figure 1. MEDEVAC Mission Timeline

A 9-line MEDEVAC request is transmitted in a standardized message format with

a prescribed amount of information that helps expedite the process of transporting

casualties. When a 9-line MEDEVAC request is determined to be necessary, it should

be transmitted over a secure communication system via a dedicated frequency. How-

ever, a 9-line MEDEVAC request can still be transmitted if no secure communication

systems are available. In wartime conditions, the information required in a 9-line

MEDEVAC request is reported in the following order: the location of the pickup site

(i.e., POI or casualty collection point (CCP)), radio frequency and call sign, number

of casualties by precedence, special equipment required, number of casualties by type,

security of pickup site, method of marking pickup site, casualty nationality and status,

and chemical, biological, radiological, and nuclear contamination. Either the senior

military member or the senior medical person (if available) at the scene identifies
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the evacuation precedence category of each casualty and determines whether a 9-line

MEDEVAC request is necessary. The tactical situation and the condition of each

casualty are taken into consideration when making this decision. The overall prece-

dence of a 9-line MEDEVAC request is based on the most time sensitive precedence

of the casualties. Correct category placement is vital and should not be overempha-

sized because it may burden the evacuation system due to aerial ambulances being

a low-asset, high-demand resource that must be managed accordingly. The United

States Army utilizes the following evacuation precedence categories when prioritizing

casualties that require medical evacuation (Department of the Army, 2014):

1. Priority I, Urgent : Assigned to emergency cases that should be evacuated as soon

as possible and within a maximum of 1 hour in order to save life, limb, or eyesight,

to prevent complications of serious illness, or to avoid permanent disability.

2. Priority II, Priority : Assigned to sick and wounded personnel requiring prompt

medical care. This precedence is used when the individual should be evacuated

within 4 hours or his medical condition could deteriorate to such a degree that he

will become an URGENT precedence, or whose requirements for special treatment

are not available locally, or who will suffer unnecessary pain or disability.

3. Priority III, Routine: Assigned to sick and wounded personnel requiring evacua-

tion but whose condition is not expected to deteriorate significantly. The sick and

wounded in this category should be evacuated within 24 hours.

In a combat situation, requests for MEDEVAC units are typically made at the POI

once enemy fire has been suppressed. MEDEVAC requests are transmitted through

several layers of command before reaching an AEO working within the GSAB at

higher headquarters. The specific information flow depends on the communication

infrastructure within the command, the communication equipment available to the
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requesting unit, and the command and control organization of the MEDEVAC system

(Rettke et al., 2016). Once the request has been made, casualties are transported to

a CCP, which is a predesignated point along the evacuation route for collecting the

wounded (Department of the Army, 2000). The time at which the MEDEVAC request

reaches the AEO is denoted by T1.

Once the GSAB receives the 9-line MEDEVAC request, the AEO must then decide

whether to immediately assign a MEDEVAC unit to the request, depending on any

pre-existing requests in the MEDEVAC system, the location of the pick-up site, the

number and precedence of the casualties, and the status of the MEDEVAC units.

If the MEDEVAC system is burdened with a high number of requests, the AEO

may reject the incoming request from entering the system and redirect the request

to be handled by casualty evacuation (CASEVAC). Assuming the request enters the

system, the AEO will wait for a suitable MEDEVAC to become available. The AEO

assigns the MEDEVAC unit to the request at time T2 along with an armed escort, if

required, to service the request.

The amount of time between an AEO receiving the 9-line MEDEVAC request,

T1, and the assignment of the MEDEVAC unit, T2, is the total wait time for the

request in the MEDEVAC system. The wait time comprises the time required to

determine which MEDEVAC unit to dispatch; whether an armed escort is required;

which armed escort team to assign, if required; and the time required to transmit

the request information to the assigned MEDEVAC unit and armed escort team, if

required.

As stated earlier, once a 9-line MEDEVAC request is received by the GSAB,

the AEO must decide whether the request should enter the MEDEVAC system or

if the request should be serviced by another organization (i.e., CASEVAC). If the

AEO allows the request to enter the MEDEVAC system and at least one suitable
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MEDEVAC unit is available to service the request, another decision must be made

as to whether the request should be assigned immediately or if the request should

be placed in a queue based on the evacuation precedence category and location (i.e.,

zone) of the request. If the AEO allows a request to enter the MEDEVAC system and

no suitable MEDEVAC units are available to service the request, then the request is

placed in its respective zone-precedence queue. Figure 2 depicts the multiple-server,

multiple-buffer queueing model employed in this thesis. The MEDEVAC queueing

system represented in Figure 2 visually depicts the wait time between points T1 and

T2 in Figure 1.

Figure 2. MEDEVAC Queueing System

Decision epochs occur when a 9-line MEDEVAC request is received by the GSAB

or when a MEDEVAC unit completes a service request and becomes available. When

a 9-line request is submitted and received by the GSAB, the AEO’s decision consists

of sending the just-arrived 9-line MEDEVAC request to its respective zone-precedence

queue (if the queue is not full), immediately assigning an available MEDEVAC unit

to service the request, or rejecting the request from ever entering the system. Once a

MEDEVAC unit reaches service completion and at least one of the zone-precedence

queues is not empty, the AEO must make a decision. The AEO’s decision consists

of either assigning a queued 9-line MEDEVAC request to one of the idle MEDEVAC
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units or waiting for another (possibly higher precedence) request to enter the system

or another MEDEVAC unit to reach service completion.

The information from the 9-line MEDEVAC request is transmitted to the assigned

MEDEVAC unit through the command’s communication system. T3 denotes the time

at which the assigned MEDEVAC unit departs its station for the CCP. The amount of

time between the MEDEVAC unit being assigned the 9-line MEDEVAC request, T2,

and the MEDEVAC unit departure, T3, is the total mission preparation time, which

includes preparing the medical equipment, medical personnel, and helicopters for the

MEDEVAC mission. Typically, if an armed escort is required, it will take off with the

MEDEVAC unit at the staging area, but there are situations where the MEDEVAC

unit must meet an armed escort at a predetermined rally point en route to the CCP.

The MEDEVAC unit cannot land at a high threat level CCP site without an armed

escort, which could lead to an increased total response time.

T4 denotes the time at which the MEDEVAC unit lands at the CCP site. Upon

arrival to the CCP site, the MEDEVAC unit immediately begins initial treatment

and loads casualties. T5 denotes the time at which the MEDEVAC unit departs

the CCP site and proceeds towards an MTF. The destination MTF is selected in a

deterministic manner based on the location of the CCP site. The MTF that is located

closest to the CCP site is the one that the MEDEVAC unit departs to at time T5.

The MEDEVAC unit arrives at the MTF site at time T6. After arriving, the

MEDEVAC unit immediately begins to unload casualties and transfers the respon-

sibility of subsequent care of the casualties to the medical staff at the MTF. After

all casualties have been unloaded, the MEDEVAC unit departs the MTF and travels

back to its own staging area. Once a MEDEVAC unit has finished unloading and

transferring the subsequent care of casualties to the MTF medical staff, it must re-

turn to its own staging area before being tasked to service another 9-line MEDEVAC
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request. This requirement comes from concerns about low fuel levels, crew bed down

limitations, on-board equipment configurations, and other logistical issues (Rettke

et al., 2016). Typically, MEDEVAC units need to return to their home staging areas

to refuel before being dispatched for another mission. T7 denotes the time at which

the MEDEVAC unit departs the MTF.

The MEDEVAC unit arrives back at its staging area, completes refueling, and is

staged for future missions at time T8. Once the MEDEVAC unit arrives back at its

staging area the mission is considered complete. The MEDEVAC unit then becomes

available for dispatch to another 9-line MEDEVAC request.

It is important to note that battlefield conditions (e.g., enemy disposition, required

equipment being transported, weather conditions, and the air density due to flight

altitude) are expected to affect the travel times from the MEDEVAC staging area to

the CCP site, from the CCP site to the selected MTF location, and from the MTF

location back to the MEDEVAC staging area.

Military medical planners must consider the measurement of MEDEVAC system

performance when considering dispatch policies. In civilian operations, the efficacy of

EMS systems has been a difficult area to evaluate due to the multitude of variables

present (MacFarlane & Benn, 2003). The search for a reliable measure of performance

remains a topic of interest in the EMS field (McLay & Mayorga, 2010). Practitioners

and researchers employ various means of assessment. The most common method for

evaluating EMS systems utilizes ambulance response times. EMS systems commonly

define the response time as the time required to reach the patient after receiving

the emergency call. Since EMS systems are evaluated on response time, one of their

primary focuses is the rapid response to cardiac arrest situations. This emphasis exists

because the ability to provide effective treatment to patients undergoing cardiac arrest

is time-sensitive.
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Another reason behind this rationale is as follows. If the EMS system has the

capability to respond quickly to cardiac arrest patients, then it is more likely to be

able to service similar life-threatening situations. Therefore, defining the response

time for a civilian EMS system to be the time between receiving the emergency call

and the time the first emergency response vehicle arrives on scene is quite intuitive.

Nonetheless, MEDEVAC system performance cannot be measured using the same

evaluation criteria as the civilian EMS system. Several additional factors complicate

the medical evacuation of a casualty from a battlefield. The travel times, load times,

and unload times can be much greater and vary significantly more in military EMS

systems when compared to a civilian EMS system. Moreover, the primary cause

of death for battlefield casualties is blood loss, not cardiac arrest. Garrett (2013)

indicates that blood loss is the primary cause of death for nearly 85% of soldiers

killed in action (KIA). Due to this issue, some MEDEVAC units have been recently

equipped with in-flight blood transfusion capabilities, but the majority are not, and

there is a lack of data to confirm whether this addition improves the ability to handle

casualties with severe blood losses (Malsby III et al., 2013). Without sufficient data to

determine the effectiveness of in-flight transfusion, there has not been a change in the

MEDEVAC system’s evaluation measure. Therefore, unlike civilian EMS systems,

it is vital to stabilize and transport battlefield casualties to an appropriate MTF

(e.g., one that has the capability and resources to perform necessary care such as

blood transfusions) and into surgery rather than simply providing medical aid at the

CCP. So, while civilian EMS systems measure performance by response time (i.e.,

the time it takes to reach the patient after obtaining the emergency call), military

EMS systems are evaluated in terms of how long it takes to transport the casualties

from the CCP to an MTF. Therefore, it is appropriate to define the response time

for a MEDEVAC unit as T7 − T2. Moreover, the service time for a MEDEVAC unit
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is defined as T8 − T2, which is commonly associated as the time expended to service

a request.

The primary objective of the MEDEVAC system presented in this thesis is to dis-

patch MEDEVAC units in a way that maximizes the expected total discounted reward

attained by the system. The dispatch authority (i.e, AEO) must make sequential de-

cisions under uncertainty as to which available MEDEVAC unit to dispatch to service

a 9-line MEDEVAC request. It is impossible to know exactly when and where ca-

sualty events will occur, which prevents the dispatch authority from having a priori

information on subsequent 9-line MEDEVAC requests. The knowledge and details of

any 9-line MEDEVAC request only become known to the MEDEVAC system upon

receipt of the request. Once the GSAB receives the request and the AEO selects

a MEDEVAC unit to dispatch, the assigned MEDEVAC unit must initiate mission

protocols immediately. The mission protocols of a MEDEVAC unit include preparing

medical personnel and equipment prior to departure, traveling to the CCP to pick up

casualties, providing appropriate en route medical care, and transporting casualties

to the nearest MTF in a rapid and efficient manner. Delaying any mission tasks

negatively impacts the total response time and ultimately decreases the survivability

rates of casualties awaiting service.

Both a dynamic and stochastic approach are needed when analyzing the dispatch

of civilian and military emergency response vehicles. The stochastic aspect of this

problem derives from the uncertainty concerning the manifestation of casualty events.

Moreover, the dispatch, travel, and service times vary for each request and cannot

be predicted precisely. When examining civilian EMS systems, the data relating

to dispatch, travel, and service times are easily accessible and can be leveraged to

parameterize decision models. Unfortunately, as noted earlier, one of the underlining

challenges for medical planners in the military is having to develop and identify a
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dispatching policy prior to commencement of combat operations. No casualty event

data exists for such a situation. Therefore, this thesis utilizes a rubric that emulates

the judgment and expertise of military planners with regard to the future interactions

of enemy and friendly forces to identify the locations and arrivals of casualty events.
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IV. Methodology

This chapter presents the Markov decision process (MDP) model of the military’s

medical evacuation (MEDEVAC) dispatching problem. One of the key benefits of

formulating an MDP model is that it provides a framework in which dynamic pro-

gramming algorithms can be utilized to compute exact optimal policies. In most cases,

MDP formulations have clear definitions for the state space, action space, rewards,

transition probabilities, and optimality equations.

The objective of the MDP model formulated in this thesis is to determine which

available MEDEVAC unit to dispatch in response to a 9-line MEDEVAC request

submission with the purpose of maximizing the expected total discounted reward

over an infinite horizon.

The MDP model assumes that 9-line MEDEVAC requests arrive according to

a Poisson process with parameter λ that is denoted by PP (λ). Military medical

planners must ensure the MEDEVAC system is tailored to effectively support friendly

forces within an assigned area of operations (AO) (Department of the Army, 2014). In

large-scale combat operations, military medical planners should examine the expected

conditions of the operation and carefully select an appropriate λ-value based on these

conditions to investigate the peak hours of operation. Each casualty event that leads

to a 9-line MEDEVAC request submission is categorized by its precedence level, which

is determined by the senior military member and/or medical personnel at the site of

injury.

The Army utilizes three casualty event precedence categories (i.e., urgent, prior-

ity, and routine) when submitting a 9-line MEDEVAC request (Department of the

Army, 2014). A routine evacuation precedence level is assigned to casualties that

are triaged as minimally injured (i.e., non-life-threatening), and typically results in

standard ground or waterborne assets responding within 24 hours of the initial event
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(De Lorenzo, 2003). Since the focus of this thesis is on the aerial aspect of MEDEVAC

operations and routine 9-line requests typically do not utilize dedicated air evacuation

assets, this thesis only considers 9-line MEDEVAC requests that have a precedence

level of either urgent or priority.

The arrival of urgent and priority 9-line MEDEVAC requests from different zones

is modeled utilizing a splitting technique. Splitting is generating two or more counting

processes out of a single Poisson process (Kulkarni, 2009). Let the original counting

process {N(t′) : t′ ≥ 0} denote the PP (λ) that counts the number of 9-line MEDE-

VAC request arrivals to the general support aviation battalion (GSAB) that have

taken place during the time interval (0, t′]. The original counting process can be split

into counting processes that are categorized by the zone z ∈ Z = {1, 2, . . . , |Z|} and

the precedence level k ∈ K = {1, 2, . . . , |K|} of the request. The sets Z and K repre-

sent the set of zones and the set of precedence levels in the system, respectively. Let

R = {(z, k) : (z, k) ∈ Z × K} be the set of request categories. There is a total of

|R| = |Z||K| request categories. The original process {N(t′) : t′ ≥ 0} is split into |R|

independent processes {Nzk(t
′) : t′ ≥ 0},∀ (z, k) ∈ R. It is clear that

N(t′) =
∑

(z,k)∈R

Nzk(t
′) (1)

since each request belongs to one and only one category. The nature of the split

processes {Nzk(t
′) : t′ ≥ 0},∀ (z, k) ∈ R depends on how the requests are cat-

egorized. The process of categorizing each request is called the splitting mecha-

nism. The Bernoulli splitting mechanism generates the split processes {Nzk(t
′) : t′ ≥

0},∀ (z, k) ∈ R given parameters pzk > 0, ∀ (z, k) ∈ R such that
∑

(z,k)∈R
pzk = 1.

Each request is independently categorized by its zone z and precedence level k combi-

nation with probability pzk independent of everything else. The splitting mechanism

allows the characterization of each split process {Nzk(t
′) : t′ ≥ 0}, (z, k) ∈ R as a
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Poisson process with parameter λpzk, which is denoted by PP (λpzk).

There may be times when a 9-line MEDEVAC request is admitted into the system,

but all MEDEVAC units are currently servicing other requests. When this occurs,

the submitted 9-line MEDEVAC request is placed in its respective zone-precedence

queue to be serviced at a later time. Moreover, there may be system states wherein

an idle MEDEVAC is available for assignment, but placing the submitted request in

its respective zone-precedence queue rather than assigning the idle MEDEVAC to the

request could prove more advantageous in the long run. For example, the decision

not to assign an available MEDEVAC unit immediately could prove beneficial if a

lower precedence request enters the system while many MEDEVAC units are busy.

In such a situation, waiting for another MEDEVAC unit to become available before

servicing the lower precedence request allows the idle MEDEVAC unit to be available

for a possibly higher precedence request, yet to arrive.

The service time for a MEDEVAC unit comprises the time between the initial as-

signment notification and returning to the staging area. This thesis assumes that the

service times of the MEDEVAC units are exponentially distributed. While this sim-

plifying assumption may not be realistic, it is often utilized in related literature. For

example, Jarvis (1985) performs several computational experiments, and the results

suggest that the shape of the service-time distribution has little impact on the overall

behavior of the system. Similarly, research by Gross & Harris (1998) also indicate the

insensitivity of service time distributions to system performance. Moreover, McLay

& Mayorga (2013b) perform simulation analyses utilizing different types of service

time distributions to study the impact of modeling the system with exponential ser-

vice times versus more realistic service times. Results indicate that the assumption

of exponential service times does not significantly impact the optimal polices. This

suggests that the optimal polices determined utilizing the MDP model from this the-
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sis give military medical planners relevant insight as to how to dispatch MEDEVAC

units despite the simplifying assumption of exponentially distributed service times.

Having introduced the characteristics of the arrival process and the nature of the

service times, formulation of the MDP model can now proceed. The development of

the MDP model components leverage Maxwell et al. (2010), Keneally et al. (2016),

and Rettke et al. (2016). The decision epochs, state space, action space, transition

probabilities, rewards, objective, and optimality equation are described in detail be-

low.

The decision epochs of the MEDEVAC system are the points in time that require

a decision. The set of decision epochs is denoted as T = {1, 2, . . .}. Two event types

in the MEDEVAC system constitute all decision epochs. The first event type is the

submission of a 9-line MEDEVAC request. The second event type is the change in

the status of a MEDEVAC unit from busy to available upon completinga mission.

The MEDEVAC system MDP model follows the properties of semi-Markov deci-

sion processes (SMDPs). SMDPs generalize MDPs by requiring the decision-maker

to select a feasible action whenever the system changes, allowing the time spent in

a specific state to follow an arbitrary probability distribution, and modeling the sys-

tem evolution in continuous time (Puterman, 1994). The MEDEVAC system MDP

model is viewed as a continuous time MDP (CTMDP), which is a special case of an

SMDP wherein the inter-transition times are exponentially distributed and decisions

are made at every transition. There are several different ways that CTMDPs can

be analyzed, but the primary method utilized in this thesis is uniformization. Uni-

formization is applied to the CTMDP model to obtain an equivalent discrete-time

discounted model with constant transition rates (Puterman, 1994). The transforma-

tion allows the results and algorithms for discrete-time MDP models to be applied

directly.
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The state St ∈ S describes the status of the entire MEDEVAC system at de-

cision epoch t ∈ T . The MEDEVAC system state is represented by the tuple

St =
(
Mt, Qt, R̂t

)
wherein Mt represents the MEDEVAC status tuple at epoch t,

Qt represents the queue status tuple at epoch t, and R̂t represents the request arrival

status tuple at epoch t.

The MEDEVAC status tuple Mt describes the status of every MEDEVAC unit in

the system at epoch t. The tuple Mt can be written as

Mt = (Mtm)m∈M , (2)

whereM = {1, 2, . . . , |M|} represents the set of MEDEVAC units in the system. The

state variable Mtm ∈ {0}∪Z contains the information pertaining to MEDEVAC unit

m ∈ M at epoch t. Each MEDEVAC unit can either be idle or servicing a request

in one of the zones in the system. When Mtm = 0, MEDEVAC unit m is idle. When

Mtm = z, MEDEVAC unit m is servicing a request from zone z ∈ Z.

The queue status tuple Qt describes the status of every zone-precedence queue in

the system at epoch t. The tuple Qt can be written as

Qt = (Qtzk)z∈Z,k∈K . (3)

The state variable Qtzk ∈ {0, 1, . . . , qmax} contains the information pertaining to the

(z, k) ∈ R zone-precedence queue at epoch t. Each zone-precedence queue can hold

no more than qmax requests at any point in time.

The request arrival status tuple R̂t indicates whether there is a request arrival

awaiting an admission decision at epoch t; it also provides the zone and precedence

level of the request arrival, given one is present at epoch t. Let R̂t = (0, 0) when there
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is not a request arrival at the GSAB at epoch t. Otherwise, let

R̂t =
(
Ẑt, K̂t

)
Ẑt∈Z,K̂t∈K

. (4)

The random variable Ẑt represents the zone of the request arrival, and the random

variable K̂t represents the precedence level of the request arrival at epoch t. At epoch

t, the information in Ẑt and K̂t has just been realized and is no longer uncertain. How-

ever, Ẑt and K̂t are random variables at epochs 1, 2, . . . , t−1 because the information

they contain is still uncertain.

The size of the state space S depends on |M|, |Z|, |K|, and qmax. The following

expression indicates the cardinality of the state space for the MEDEVAC system:

|S| = (1 + |Z|)|M| (1 + qmax)|Z||K| (1 + |Z||K|) . (5)

Unfortunately, the size of the state space grows exponentially with respect to the

number of state variables. This is commonly referred to as the curse of dimensionality

and renders dynamic programming intractable for analyzing practical (i.e., large-

scale) scenarios. The purpose of constructing and analyzing small problem instances

is to determine if any insight concerning practical scenarios can be obtained by solving

the small problem instances exactly utilizing dynamic programming.

Events are triggered when a 9-line MEDEVAC request is submitted to the system

or if a busy MEDEVAC unit completes a service request and becomes available. An

admission control decision only occurs when a 9-line MEDEVAC request is submitted

to the system. A dispatching decision may be necessary when either of these two event

types occur.

The MEDEVAC system employs an inter-zone policy regarding airspace access

that allows any MEDEVAC unit to service any 9-line MEDEVAC request, regardless
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of the zone from which the request originated. Once a MEDEVAC unit is tasked,

it will be considered unavailable until the task is completed and the MEDEVAC

unit has returned to its own staging area. While rerouting a MEDEVAC unit dur-

ing mid-flight can be accomplished, potential delays and communication difficulties

can create issues in the MEDEVAC system that may ultimately cost casualties their

lives. Furthermore, most military operations do not utilize a MEDEVAC unit rerout-

ing strategy during combat operations (Rettke et al., 2016). Due to these reasons,

rerouting MEDEVAC units mid-flight is not incorporated in this MDP model.

When a 9-line MEDEVAC request is submitted, the AEO must take into ac-

count the current state of the system and make an admission control and possibly a

dispatching decision. There are three possible alternatives: allowing the request to

enter its respective zone-precedence queue; assigning an available MEDEVAC unit to

service the request immediately; or rejecting the request from entering the system,

which forces the request to be serviced by an outside agency (i.e., CASEVAC). If a

request arrival is present at epoch t and its queue is not full, i.e., R̂t =
(
Ẑt, K̂t

)
and

QtẐtK̂t
< qmax, Ẑt ∈ Z, K̂t ∈ K, then the AEO can either accept or reject the request

from entering the system. If the request is accepted, it can either be placed in its

respective zone-precedence queue or an available MEDEVAC unit can be tasked to

service the request immediately. Moreover, if a request arrival is present at epoch t

and its queue is full, i.e., R̂t =
(
Ẑt, K̂t

)
and QtẐtK̂t

= qmax, Ẑt ∈ Z, K̂t ∈ K, then the

AEO must reject the request from entering the system. Practically speaking, qmax

should be set high enough so that requests are not routinely rejected due to a full

queue.

Let the decision variable xrejectt ∈ {∆, 0, 1} denote the admission control decision

at epoch t. If an arrival request is not present at epoch t, i.e., R̂t = (0, 0), the only

available decision is xrejectt = ∆, which indicates the system will continue to transition
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without any impact from xrejectt . When xrejectt = 0, the arrival request at epoch t is

admitted to the MEDEVAC system, whereas when xrejectt = 1, the arrival request at

epoch t is rejected from entering the MEDEVAC system.

Dispatching decisions may be required when either a 9-line request is submitted

or a busy MEDEVAC unit completes a service request and becomes available. Let

I(St) = {m : m ∈ M,Mtm = 0} denote the set of idle MEDEVAC units available

for dispatching when the state of the system is St at epoch t. Let W(St) = {(z, k) :

(z, k) ∈ R, Qtzk > 0} denote the set of zone-precedence queues that have at least one

casualty event awaiting service when the state of the system is St at epoch t. The

dispatching decision is represented by the tuple xdt = (xart , x
qr
t ) wherein xart represents

the arrival request dispatch decision tuple and xqrt represents the queued requests

dispatch decision tuple at epoch t.

The arrival request dispatch decision tuple xart describes the AEO’s dispatching

decision with regard to arrival requests at epoch t. The tuple xart can be written as

xart = (xartm)m∈I(St)
. (6)

The decision variable xartm = 1 if MEDEVAC unit m ∈ I(St) is dispatched to service

the arrival request R̂t =
(
Ẑt, K̂t

)
, where Ẑt ∈ Z and K̂t ∈ K, at epoch t, and 0

otherwise.

The queued requests dispatch decision tuple, xqrt , describes the AEO’s dispatching

decision with regard to queued requests at epoch t. The tuple xqrt can be written as

xqrt = (xqrtmzk)m∈I(St),(z,k)∈W(St)
. (7)

The decision variable xqrtmzk = 1 if MEDEVAC unit m ∈ I(St) is dispatched to service

a queued request from the (z, k) zone-precedence queue, where (z, k) ∈ W(St), at
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epoch t, and 0 otherwise.

Let xt =
(
xrejectt , xdt

)
denote a compact representation of the decision variables at

epoch t. Several constraints bound the decisions being made at epoch t. The first

constraint,

I{R̂t 6=(0,0)}

∑
m∈I(St)

xartm +
∑

m∈I(St)

∑
(z,k)∈W(St)

xqrtmzk ≤ 1, (8)

requires that there is at most one MEDEVAC unit dispatched at epoch t. The next

constraint,

xrejectt ≤ 1−
∑

m∈I(St)

xartm, (9)

indicates that if an arrival request is present at epoch t and a MEDEVAC unit is tasked

to service the arrival request at epoch t, as indicated by xartm = 1 for some m ∈ I(St),

then the arrival request must enter the system, as indicated by xrejectt = 0. Otherwise,

xartm = 0 for all m ∈ I(St), and the arrival request is either queued (i.e., xrejectt = 0)

or rejected (i.e., xrejectt = 1) from the system at epoch t. The set of available actions

when a decision is required is denoted as follows

X (St) =



(
∆, ({0}|I(St)|, {0, 1}|I(St)|×|W(St)|)

)
, if R̂t = (0, 0), I(St) 6= ∅,W(St) 6= ∅(

∆, ({0}|I(St)|, {0}|I(St)|×|W(St)|)
)
, if R̂t = (0, 0), (I(St) = ∅ or W(St) = ∅)(

1, ({0}|I(St)|, {0, 1}|I(St)|×|W(St)|)
)
, if R̂t = (Ẑt, K̂t), Q

tẐtK̂t
= qmax, I(St) 6= ∅,W(St) 6= ∅(

1, ({0}|I(St)|, {0}|I(St)|×|W(St)|)
)
, if R̂t = (Ẑt, K̂t), Q

tẐtK̂t
= qmax, (I(St) = ∅ or W(St) = ∅)(

{0, 1}|I(St)|,
(
{0, 1}|I(St)|, {0, 1}|I(St)|×|W(St)|

))
, if R̂t = (Ẑt, K̂t), Q

tẐtK̂t
< qmax, I(St) 6= ∅,W(St) 6= ∅(

{0, 1}|I(St)|, ({0}|I(St)|, {0}|I(St)|×|W(St)|)
)
, if R̂t = (Ẑt, K̂t), Q

tẐtK̂t
< qmax, I(St) = ∅

(10)

where Constraints (8) and (9) must be satisfied. The first two cases in Equation (10)

represent all feasible actions when the decision epoch occurs due to a MEDEVAC

unit completing a service request and becoming available immediately, whereas the

last four cases represent all feasible actions when the decision epoch occurs due to a

9-line MEDEVAC request submission.

State transitions are Markovian with two possible events dictating the transition.
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The first event type is the submission of a 9-line MEDEVAC request. Recall that

9-line MEDEVAC requests arrive according to a PP (λ). The second event type is the

change in the status of a MEDEVAC unit from busy to available upon completinga

mission. Let µmz denote the service rate of MEDEVAC unit m ∈M when servicing a

9-line MEDEVAC request in zone z ∈ Z. Let B(St) = {m : m ∈M,Mtm 6= 0} denote

the set of busy MEDEVAC units when the state of the system is St at epoch t. If the

MEDEVAC system is in pre-decision state St and action xt is taken, the system will

immediately transition to a post decision state Sxt . The sojourn time in Sxt (i.e., the

time the system remains in post decision state Sxt before transitioning to to the next

pre-decision state St+1) follows an exponential distribution with parameter β(St, xt).

Simple calculations reveal that

β(St, xt) = λ+
∑

m∈B(St)

µm,Mtm +
∑

m∈I(St)

µm,Ẑtx
ar
tm +

∑
m∈I(St)

∑
(z,k)∈W(St)

µmzx
qr
tmzk. (11)

If B(St) = ∅, xartm = 0 ∀ m ∈ I(St), and xqrtmzk = 0 ∀ m ∈ I(St), (z, k) ∈ W(St),

then β(St, xt) represents the sojourn time for the state-action pairs wherein the next

decision epoch occurs upon the arrival of a 9-line MEDEVAC request. Otherwise,

β(St, xt) represents the sojourn time for the state-action pairs wherein the next de-

cision epoch occurs after either a 9-line MEDEVAC request arrives to the GSAB or

one of the busy MEDEVACs completes a service request and becomes available. Let

Ta denote the time until the next 9-line MEDEVAC request arrival. Let Ts denote

the time until the next service completion. The time until the next decision epoch Te

satisfies Te = min(Ta, Ts). Since both Ta and Ts follow an exponential distribution,

standard calculations show that Te follows an exponential distribution with parameter

β(St, xt).

The probabilistic behavior of the process is summarized in terms of its infinitesimal
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generator. The infinitesimal generator is a |S| × |S| matrix G with components:

G(St+1|St, xt) =


−[1− p(St|St, xt)]β(St, xt), if St+1 = St

p(St+1|St, xt)β(St, xt), if St+1 6= St

(12)

wherein p(St+1|St, xt) denotes the probability that the system transitions to state St+1

given that it is currently in state St and decision xt is made. Note that p(St|St, xt) = 0,

which means that the system will transition to a different state at the end of a sojourn

in state St.

Puterman (1994) argues that converting CTMDPs to equivalent discrete-time

MDPs via the uniformization approach makes subsequent analysis easier to perform.

To uniformize the system, the maximum rate of transition must be determined and

is calculated by

ν = λ+
∑
m∈M

τm, (13)

where

τm = max
z∈Z

µmz, ∀ m ∈M. (14)

The restriction that there are no self transitions from a state to itself is removed when

uniformization is applied to the process. Applying uniformization gives the following

transition probabilities:

p̃(St+1|St, xt) =


1− [1−p(St|St,xt)]β(St,xt)

ν
, if St+1 = St

p(St+1|St,xt)β(St,xt)
ν

, if St+1 6= St.

(15)

This transformation may be viewed as inducing extra (i.e., “notional”) transitions

from a state to itself. This modified process has the same probabilistic structure as

the CTMDP.
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The decision epochs in CTMDPs follow each state transition, and the times

between decision epochs are exponentially distributed. Several factors impact the

amount of reward gained from making a decision to service a 9-line MEDEVAC re-

quest. These factors include the zone and precedence level of the 9-line MEDEVAC re-

quest as well as the staging area of the servicing MEDEVAC unit. Let c(St, xt) = ψmzk

denote the immediate expected reward (i.e., contribution) if MEDEVAC unit m ∈M

is dispatched to service a zone z ∈ Z, precedence level k ∈ K 9-line MEDEVAC re-

quest (i.e., xartm = 1 or xqrtmzk = 1). The immediate expected reward is computed as

follows:

ψmzk =


δe

ζmz
60 , if k = 1 (i.e., urgent)

e
ζmz
240 , if k = 2 (i.e., priority)

0, otherwise,

(16)

wherein ζmz is the expected response time when MEDEVAC m ∈ M is dispatched

to service a request in zone z ∈ Z, and δ ≥ 1 is a tradeoff parameter utilized to vary

the urgent to priority immediate expected reward ratio. If a MEDEVAC unit is not

dispatched to service a 9-line MEDEVAC request at epoch t then c(St, xt) = 0.

Multiple casualties with different levels of severity may comprise a single 9-line

MEDEVAC request. In practice, each casualty is assigned an evacuation precedence

category, but in this model, the overall 9-line MEDEVAC request classification (i.e.,

the evacuation precedence category) is based on the most time-sensitive casualty

within the request. The 9-line MEDEVAC classification should not be overemphasized

because it may place a burden on the MEDEVAC dispatching system that could result

in the loss of lives.

Let h(St, xt) denote the continuous expected holding cost accumulated when deci-

sion xt is selected in state St. The MEDEVAC system incurs a holding cost based on

the time requirements outlined in the Army’s Medical Evacuation Field Manual. The
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MEDEVAC system seeks to service urgent and priority 9-line MEDEVAC requests

within 60 and 240 minutes from notification, respectively. Let φk denote the hold-

ing cost rate for holding a single precedence-k request in its queue between decision

epochs. The holding cost rate φk can be written as

φk = ξ

∑
m∈M

∑
z∈Z

ψmzk

|M||Z|
,∀k ∈ K, (17)

where ξ ∈ [0, 1] is a parameter that scales the holding cost rate for a precedence-k

request based on the average immediate expected reward over all possible MEDEVAC-

zone combinations. Summing the holding costs over all zone-precedence queues gives

the following expression

h(St, xt) =
∑
z∈Z

∑
k∈K

φkQtzk. (18)

Simple calculations show that ifW(St) = ∅ then h(St, xt) = 0. That is, if no requests

are queued, then no holding cost is incurred. Since the system does not change in the

time between decision epochs, the expected discounted reward is

r(St, xt) = c(St, xt)−
h(St, xt)

α + β(St, xt)
, (19)

where α > 0 denotes the continuous time discounting rate. Applying uniformization

gives

r̃(St, xt) ≡ r(St, xt)
α + β(St, xt)

α + ν
. (20)

Note that the uniformized rewards agree with the rewards in the CTMDP.

Let Xπ(St) be a policy (i.e., decision function) that prescribes AEO dispatch

decisions for each state St ∈ S. That is, x = Xπ(St) is the dispatching decision

returned when utilizing policy π. The optimal policy π∗ is sought from the class of

policies (Xπ(St)π∈Π) that maximizes the expected total discounted reward earned by
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the MEDEVAC system. The objective is expressed as

max
π∈Π

Eπ
{ ∞∑

t=1

γt−1r̃(St, X
π(St))

}
, (21)

where γ = ν
ν+α

is the uniformized discount factor. The optimal policy is found by

solving the Bellman equation

J(St) = max
xt∈X (St)

{
r̃(St, xt) + γ

∑
St+1∈S

p̃(St+1|St, xt)J(St+1)
}
. (22)

The policy iteration algorithm is implemented in MATLAB to solve Equation (22)

exactly. Policy iteration starts with an initial policy and then iteratively performs two

steps: policy evaluation, which computes the expected total discounted reward of each

state given the current policy, and policy improvement, which updates the current

policy if any improvements are available (Puterman, 1994). The policy iteration

algorithm terminates after the policy converges.

For comparison purposes, a linear programming (LP) model of the Markov deci-

sion problem is also constructed. Puterman (1994) notes that LP has not proven to be

an efficient method for solving large discounted Markov decision problems. However,

recent advancements in LP algorithms have increased the computational efficiency of

LP (e.g., as indicated by the performance testing of CPLEX and Gurobi in Bixby

(2012)) and make LP a more viable solution method for solving MDPs. Use of an

efficient LP algorithm benefits the analysis of MDPs because it eases the inclusion

of constraints and provides a better mechanism with which to conduct sensitivity

analyses.
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V. Testing, Analysis & Results

This chapter presents a representative military medical evacuation (MEDEVAC)

planning scenario utilized both to demonstrate the applicability of the Markov deci-

sion process (MDP) model and to examine the behavior of the optimal dispatching

policy. A series of sensitivity analyses and excursions identify the model parameters

that significantly impact the optimal dispatching policy. Military medical planners

should focus on these parameters when developing MEDEVAC dispatching polices.

Moreover, this chapter compares the computational efficiency of policy iteration via

MATLAB versus linear programming via CPLEX. The thesis utilizes a dual Intel

Xeon E5-2650v2 workstation having 128 GB of RAM and MATLAB’s Parallel Com-

puting Toolbox to conduct the computational experiments and analysis outlined is

this chapter.

5.1 Representative Scenario

As of 2017, the United States (U.S.) continues to conduct military operations in

Afghanistan. The initial launch of U.S. military operations in Afghanistan began

with the initiation of Operation ENDURING FREEDOM (OEF) on October 7, 2001

in response to the terrorist attacks on New York’s World Trade Center and the Pen-

tagon on September 11, 2001. OEF lasted a little over 13 years and officially ended

when U.S. combat operations in Afghanistan were terminated on December 31, 2014.

However, as part of Operation FREEDOM’S SENTINEL (OFS), U.S. military forces

still remain in Afghanistan to participate in a coalition mission to train and assist

the Afghan military and to conduct counter-terrorism operations against Al Qaeda

(Department of Defense, 2016). While official U.S. combat operations are currently

not being conducted in Afghanistan, military medical planners still prepare and plan
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for potential combat scenarios in the event that a sudden change requires U.S. combat

operations.

The computational examples in Bandara et al. (2012), Keneally et al. (2016), and

Rettke et al. (2016) are leveraged as a basis for the representative scenario examined

herein. This thesis considers a notional planning scenario in which a coalition of allied

countries executes combat operations in response to an increase in terrorist attacks by

remnants of Al-Qaeda militants in southern Afghanistan. For simplicity, this notional

scenario (hereafter referred to as the 2× 2 case) assumes a MEDEVAC system with

two demand zones (i.e., the zones at which 9-line MEDEVAC requests originate) and

two MEDEVAC unit staging areas (i.e., the locations in which the MEDEVAC units

are stationed) with one medical treatment facility (MTF) co-located at each staging

area.

Afghanistan is comprised of 34 provinces. Figure 3 utilizes the data from White

(2016) to illustrate the war-related fatalities of allied forces in Afghanistan by province

since the beginning of OEF until December 2016. The 2 × 2 case assumes that the

southern region of Afghanistan is the area of operations (AO) and is divided into

two separate demand zones: Helmand province (Zone 1) and Kandahar province

(Zone 2). Two MEDEVAC units are considered with one being staged in Zone 1

(i.e., MEDEVAC 1) and the other being staged in Zone 2 (i.e., MEDEVAC 2). The

placement of the staging areas and co-located MTFs represents a general realism

based on the historical trends in enemy activity in southern Afghanistan.

As depicted in Figure 3, Helmand and Kandahar are the two provinces that have

produced the most war-related fatalities in Afghanistan since the start of OEF with

956 and 558 killed in action (KIA), respectively (White, 2016). While these numbers

do not account for every type of casualty (e.g., military wounded in action (WIA)

and civilian casualties), they do provide a representative sample that is utilized as an
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Figure 3. Afghanistan combat fatalities by province, 2001-2016

approximation of the threat level present in each zone. Moreover, these numbers are

utilized to determine the proportion of 9-line MEDEVAC requests from each zone.

Simple calculations yield that the proportion of requests coming from Zone 1 is pz1 =

0.6314 and the proportion of requests coming from Zone 2 is pz2 = 1− pz1 = 0.3686.

Each 9-line MEDEVAC request is independently categorized by its zone z (e.g.,

Helmand and Kandahar) and precedence level k (e.g., urgent, priority, and routine)

combination. Fulton et al. (2010) report that the probability of a casualty event

being classified with a precedence level of urgent, priority, or routine is 11%, 12%,

and 77%, respectively. Recall that routine requests are assumed to be serviced by non-

MEDEVAC units (i.e., casualty evacuation (CASEVAC)). The 2×2 case assumes that

the proportion of requests classified with an urgent precedence level is pk1 = 0.5 and

the proportion of requests classified with a priority precedence level is pk2 = 1−pk1 =
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0.5. The proportion of each request categorization pzk is found by multiplying the

zone proportion with the precedence level proportion (e.g., p11 = pz1pk1). Table 1

shows the 2× 2 case’s request categorization proportions.

Table 1. 9-Line MEDEVAC Request Proportions by Zone-Precedence Level

Zone, z Urgent Priority
Zone 1 (Helmand) 0.3157 0.3157
Zone 2 (Kandahar) 0.1843 0.1843

Military medical planners estimate the arrival rate of 9-line MEDEVAC requests

by estimating when and where future tactical level engagements will take place, along

with the likelihood and severity of casualty events. The reward obtained for servicing

a 9-line MEDEVAC request depends on the locations of the request, the servicing

MEDEVAC unit, and the closest MTF. The response and service times described in

Chapter III are generated by leveraging the procedure set forth in Keneally et al.

(2016).

The procedure utilized to model future 9-line MEDEVAC requests avoids using

current data from southern Afghanistan to maintain operational security. Indeed,

actual data for current MEDEVAC unit, casualty event, and MTF locations are re-

stricted. Instead, the spatial distribution of future 9-line MEDEVAC requests are

modeled with a Monte Carlo simulation via a Poisson cluster process. Casualty clus-

ter centers are selected by leveraging data from ICOS (2008) pertaining to insurgent

attacks in southern Afghanistan resulting in death in 2007. It is assumed that all ca-

sualty events generated from the casualty cluster centers result in 9-line MEDEVAC

requests. Moreover, the distribution of 9-line MEDEVAC request locations from a

given casualty cluster center is generated on a uniform distribution with respect to

the distance of the request to the casualty cluster center. Military medical plan-

ners must keep in mind that data will certainly change with respect to each unique

conflict. Furthermore, the dispatching policy generated depends on the input data
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and, therefore, must be relevant to the scenario being modeled to obtain meaningful

results.

Figure 4 depicts the two zones (i.e., Helmand and Kandahar) in southern Afghan-

istan utilized to generate the data, as well as the MEDEVAC and MTF locations.

Recall that the MEDEVAC and MTF locations are collocated for the 2×2 case. The

collocated MEDEVAC and MTF locations in each zone are represented by blue stars.

The casualty cluster centers in each zone are represented by red diamonds.

Figure 4. MEDEVAC and MTF locations with Casualty Cluster Centers

Figure 5 illustrates several casualty events resulting in 9-line MEDEVAC requests

throughout southern Afghanistan within a 48-hour time period. The collocated

MEDEVAC and MTF locations are still represented by blue stars. The casualty

events are represented by red circles.
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Figure 5. Sampled Casualty Events in Helmand and Kandahar

The data generated for the variables that comprise the response time vary with

each mission and, therefore, are represented as random variables. The response time

variables representing mission preparation time, travel time to casualty collection

point (CCP), service time at CCP, travel time to MTF, and service time at the MTF

are defined in Chapter III and described in detail in the following four paragraphs.

The mission preparation time is exponentially distributed with a mean of 10 min-

utes. The 2008 MEDEVAC after action report (AAR) estimates mission prep time to

be 20 minutes (Bastian, 2010). This AAR, along with personal experiences, influences

Bastian (2010) to model mission prep time with a mean of 20 minutes and standard

deviation of 5 minutes. However, a more recent interview with a MEDEVAC pilot

in O’Shea (2011) reports that with proper pre-planning procedures the mission prep
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time is often less than 10 minutes.

The armed escort delay is exponentially distributed with a mean of 10 minutes.

Garrett (2013) reports that there is a 31% chance that a MEDEVAC mission requires

an armed escort. Moreover, of the missions requiring an armed escort, approximately

4% are delayed due to issues caused primarily by the escort aircraft. These percent-

ages are included in the computation of the expected response times and, therefore,

the expected rewards. The delay caused by armed escorts is an important feature

of the MEDEVAC problem. This thesis applies the same armed escort assumptions

found in Keneally et al. (2016), to which we refer a more interested reader for a more

in depth description on how armed escorts impact this MDP model.

The flight speed, which accounts for the travel time to the CCP and the travel time

to the MTF, is uniformly distributed between 120 and 193 knots with a resulting mean

of 156.5 knots. This flight speed is based on currently fielded MEDEVAC helicopters

(i.e., HH-60Ms) and on subject matter expertise (Bastian, 2010).

The service time at the CCP and the service time at the MTF are exponentially

distributed with a mean of 10 minutes and five minutes, respectively. These times

are determined by leveraging the data provided by in-theater MEDEVAC pilots and

other subject matter experts described in Bastian (2010) and Keneally et al. (2016).

The just-described response time random variables, casualty cluster centers, and

MEDEVAC staging areas are utilized in a Monte Carlo simulation to obtain a syn-

thetic, but realistic, spatial distribution of future 9-line MEDEVAC requests and

response time data. The means of the response times are computed and presented in

Table 2.

Table 2. Expected Response Times (minutes)

Zone, z MEDEVAC 1 MEDEVAC 2
1 (Helmand) 34.25 48.18
2 (Kandahar) 52.98 36.89
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After the expected response times are computed, the expected service times can

be computed by simply adding the appropriate expected response time to the MEDE-

VAC unit’s travel time back to its staging area. This travel time is defined in Chapter

III and is based on the flight speed of the MEDEVAC helicopter. The distribution

for the flight speed for the travel time to the staging area is the same as the flight

speed distributions for the travel times to the CCP and MTF. The expected service

times for the 2× 2 case are provided in Table 3.

Table 3. Expected Service Times (minutes)

Zone, z MEDEVAC 1 MEDEVAC 2
1 (Helmand) 34.25 67.28
2 (Kandahar) 72.13 36.89

Recall from Chapter IV that the MEDEVAC system employs an inter-zone policy

regarding airspace access. This means that any MEDEVAC unit can service any

9-line MEDEVAC request, regardless of the zone from which the request originated.

For example, the MEDEVAC unit staged in Helmand for the 2 × 2 case can service

requests from both Helmand and Kandahar.

The thesis applies a survivability function that is monotonically decreasing in

response time to compute the reward obtained from servicing a 9-line MEDEVAC

request. The immediate expected reward for servicing a 9-line MEDEVAC request is

determined by the precedence level and the response time of the request as indicated

in Equation (16). For the 2×2 case, the immediate expected reward function utilizes

δ = 10, which rewards the servicing of urgent (i.e., k = 1) 9-line MEDEVAC requests

much more than priority (i.e., k = 2) 9-line MEDEVAC requests. Table 4 summarizes

the computed immediate expected rewards, ψmzk.

The continuous expected holding cost is computed based on the number of urgent

and priority 9-line MEDEVAC requests that are in the queue between decision epochs.

The 2× 2 case utilizes ξ = 0.20, which scales the holding cost rate for a precedence-
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Table 4. Immediate Expected Rewards

MEDEVAC, m
Zone, z Precedence, k 1 2
1 (Helmand) 1 (Urgent) 5.65 4.48

2 (Priority) 0.87 0.82
2 (Kandahar) 1 (Urgent) 4.14 5.41

2 (Priority) 0.80 0.86

k request to be 20% of the average immediate expected reward over all possible

MEDEVAC-zone combinations.

The 2 × 2 case assumes a high operations tempo with a baseline request arrival

rate of λ = 1
60

, representing an average 9-line MEDEVAC request rate of one request

per . The military intelligence community, operational planners, and medical plan-

ners should work together to determine a reasonable request arrival rate prior to a

planned combat operation based on the equipment, size, and disposition of friendly

and adversary forces.

5.2 Representative Scenario Results

A list of parameters associated with the 2 × 2 case are displayed in Table 5.

Utilizing the parameter settings in Table 5 and the expected response times, expected

service times, and immediate expected rewards computed in the previous section, the

optimal policy for the 2×2 case is determined via policy iteration. Applying Equation

(5) reveals that size of the state space for the 2×2 case is 58,320. This result indicates

that even for this relatively simple scenario, the size of the state space is quite large.

For comparison purposes, three baseline dispatching policies are considered. The

three baseline policies are all based on a classic inter-zone myopic policy. Recall that

an inter-zone myopic policy sends the closest available MEDEVAC unit to service an

incoming 9-line MEDEVAC request, regardless of the request’s zone or precedence

level. All three baseline policies adopt this strategy when at least one MEDEVAC
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Table 5. 2× 2 Case Parameters

Parameter Description Setting
λ 9-line MEDEVAC request arrival rate 1

60

|M| Total # of MEDEVACs 2
|Z| Total # of zones 2
|K| Total # of precedence levels 2
qmax Max (z, k) queue length 5
γ Uniformized discount factor 0.99
δ Weight for urgent request 10
ξ Scale for holding cost rate 0.2
pz1 Zone 1 proportion of requests 0.6314
pz2 Zone 2 proportion of requests 0.3686
pk1 Urgent proportion of requests 0.5
pk2 Priority proportion of requests 0.5

unit is available. The differences between the three baseline policies are found when

both MEDEVAC units are busy. The first baseline policy (i.e., Myopic 1) will queue

9-line MEDEVAC requests if there are no available MEDEVAC units to service the

request, regardless of the request’s zone or precedence level. The second baseline pol-

icy (i.e., Myopic 2) will queue only urgent 9-line MEDEVAC requests if there are no

available MEDEVACs to service the request, regardless of the urgent request’s zone.

The third baseline policy (i.e., Myopic 3) will not queue any 9-line MEDEVAC re-

quests. If there are queued requests, the Myopic 1 and Myopic 2 dispatching policies

service requests with a prioritized first-come-first-serve basis. The optimal policy’s

dispatching strategy, queue lengths, and MEDEVAC utilization rates are compared

against the three baseline policies to obtain a better understanding of where similar-

ities and differences exist. Moreover, the optimality gap for each baseline policy is

computed to demonstrate whether a myopic policy is appropriate for the given 2× 2

case.

The dispatching decisions for the optimal policy and three baseline policies are

compared in three separate scenarios. Each scenario (i.e., Scenarios 1-3) considers

a set of MEDEVAC system states with empty zone-precedence queues. The first
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scenario (i.e., Scenario 1) considers a system state wherein both MEDEVAC units

are idle, which can be represented as St ∈ ((0, 0), (0, 0, 0, 0), R̂t). The dispatching

policies for Scenario 1 are displayed in Table 6. Regardless of the zone or precedence

level of the incoming 9-line MEDEVAC request, R̂t, all four policies react in a myopic

fashion when the system is in state St ∈ ((0, 0), (0, 0, 0, 0), R̂t), sending the closest

MEDEVAC unit to service the request.

Table 6. Comparison of Dispatching Policies for Scenario 1

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2) Dispatch MEDEVAC 1
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2

The second scenario (i.e., Scenario 2) considers a set of MEDEVAC system states

wherein MEDEVAC 1 is idle and MEDEVAC 2 is busy, which can be represented

as St ∈ ((0, z), (0, 0, 0, 0), R̂t) where z ∈ {1, 2}. Moreover, the third scenario (i.e.,

Scenario 3) considers a set of MEDEVAC system states wherein MEDEVAC 1 is

busy and MEDEVAC is idle, which can be represented as St ∈ ((z, 0), (0, 0, 0, 0), R̂t)

where z ∈ {1, 2}. The dispatching policies for Scenarios 2 and 3 are displayed in

Tables 7 and 8, respectively. Contrary to the findings of Keneally et al. (2016) in

their computational example, the best MEDEVAC unit to dispatch to service a 9-

line MEDEVAC request does depend on the zone in which the busy MEDEVAC is

currently servicing. Note that this is an observed result based on the parameter

settings for the 2× 2 case and that location-independent policies are a possibility, as

seen in Keneally et al. (2016). In Tables 7 and 8 an asterisk (*) is placed next to

the incoming requests, R̂t, that do not follow a myopic policy. It is expected that
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a myopic policy will apply to all urgent 9-line MEDEVAC requests due to the life

threatening nature of these requests and the accompanying high rewards for servicing

them

Table 7. Comparison of Dispatching Policies for Scenario 2

MEDEVAC 2 Servicing Zone 1 MEDEVAC 2 Servicing Zone 2

Policy R̂t Queue\Dispatch\Reject Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(1,2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1
(2,1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1
(2,2)* Reject Queue

Myopic 1 (1,1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(2,2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

Table 8. Comparison of Dispatching Policies for Scenario 3

MEDEVAC 1 Servicing Zone 1 MEDEVAC 1 Servicing Zone 2

Policy R̂t Queue\Dispatch\Reject Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(1,2)* Queue Reject
(2,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

Myopic 1 (1,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
Myopic 2 (1,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
Myopic 3 (2,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

Consider the Scenario 2 results displayed in Table 7. The MEDEVAC system is in

a state St ∈ ((0, z), (0, 0, 0, 0), R̂t) where z ∈ {1, 2}. The optimal dispatching policy

for R̂t = (2, 2) depends on z, the zone where MEDEVAC 2 is currently servicing

a request. If MEDEVAC 2 is servicing Zone 1 (i.e., z = 1) and R̂t = (2, 2), then

the optimal decision is to reject the request from entering the system and send the

request to be serviced by CASEVAC. If MEDEVAC 2 is servicing Zone 2 (i.e., z = 2)

and R̂t = (2, 2), then the optimal decision is to accept and queue the request. Both

of these decisions differ from the myopic decision (i.e., dispatch MEDEVAC 1 to
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service the request). This shows that, if the system is in a Scenario 2 state and

R̂t = (2, 2), then the optimal policy will reserve MEDEVAC 1 for either an urgent

9-line MEDEVAC request or a Zone 1 request. The difference between rejecting or

queueing the request is driven by the difference in expected service times. Recall that

there is large difference in expected service times for MEDEVAC 2 to Zone 1 and

MEDEVAC 2 to Zone 2; 67.28 minutes and 36.28 minutes, respectively.

Consider the Scenario 3 results displayed in Table 8. The MEDEVAC system is in

a state St ∈ ((z, 0), (0, 0, 0, 0), R̂t) where z ∈ {1, 2}. The optimal dispatching policy

for R̂t = (1, 2) depends on z, the zone where MEDEVAC 1 is currently servicing a

request. If MEDEVAC 1 is servicing Zone 1 (i.e., z = 1) and R̂t = (1, 2), then the

optimal decision is to accept and queue the request. If MEDEVAC 2 is servicing

Zone 2 (i.e., z = 2) and R̂t = (1, 2), then the optimal decision is to reject the request

from entering the system and send the request to be serviced by CASEVAC. Both

of these decisions differ from the myopic decision (i.e., dispatch MEDEVAC 2 to

service the request). This shows that, if the system is in a Scenario 3 state and

R̂t = (1, 2), then the optimal policy will reserve MEDEVAC 2 for either an urgent

9-line MEDEVAC request or a Zone 2 request. The difference between rejecting or

queueing the request is driven by the difference in expected service times. Recall that

there is large difference in expected service times for MEDEVAC 1 to Zone 1 and

MEDEVAC 2 to Zone 1; 34.25 minutes and 72.13 minutes, respectively.

The workload of each MEDEVAC unit is an interesting performance measure, and

substantial differences between the optimal and baseline policies are revealed when

the probabilities of each MEDEVAC being busy are examined. Figures 6 and 7 display

the long-run busy probabilities for MEDEVAC 1 and MEDEVAC 2, respectively.

Examination of Figures 6 and 7 indicate that the optimal policy prefers to have

MEDEVAC units servicing their own zone (i.e., the zone in which they are staged).
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Figure 6. Comparison of MEDEVAC 1 busy probabilities

This result aligns with intuition due to the large differences in expected service times

mentioned earlier. Moreover, both figures show a substantial difference in the MEDE-

VAC long-run busy probabilities between the optimal and baseline policies. Consider

Figure 7. All three baseline policies result in MEDEVAC 2 servicing requests in Zone

1 more than Zone 2, whereas MEDEVAC 2 is primarily busy servicing Zone 2 requests

when implementing the optimal policy. This interesting result is driven in part by

the higher proportion of requests arriving from Zone 1 (pz1 = 0.6314) and because

baseline policies are forced to send MEDEVAC 2 to service Zone 1 requests (when

MEDEVAC 1 is busy and MEDEVAC 2 is available) whereas the optimal policy is

allowed to queue or reject the request.

Another interesting result found from the analysis of MEDEVAC busy probabil-
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Figure 7. Comparison of MEDEVAC 2 busy probabilities

ities is the combined average utilization of both MEDEVACs for each policy. The

data displayed in Table 9 represents the system when at least one MEDEVAC unit

is being utilized, regardless of the zone being serviced. The optimal policy has the

lowest combined average MEDEVAC utilization of 0.3569, meaning that the optimal

policy utilizes each MEDEVAC in the most efficient manner. Moreover, the Myopic 1

policy has the highest combined average MEDEVAC utilization of 0.4073. This aligns

with expectations because the optimal policy has control over admission, queueing,

and dispatching rules whereas the baseline policies do not.

Another performance measure of interest is the average lengths of each zone-

precedence queue. Obviously, the Myopic 3 policy will not have any queueing data,

but comparisons can still be made between the optimal policy, the Myopic 1 policy,
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Table 9. Comparison of Combined Average MEDEVAC Utilization

Policy Utilization
Optimal 0.3569
Myopic 1 0.4073
Myopic 2 0.3798
Myopic 3 0.3591

and the Myopic 2 policy. Figure 8 displays the long-run average queue lengths for each

zone-precedence queue. The average zone-precedence queue lengths for the optimal

policy are strictly less than the baseline averages for every zone-precedence queue

except for Qt12. The optimal policy’s average Qt12 length is greater than the Myopic 1

policy’s Qt12 length. In comparison to the Myopic 1 policy, the optimal policy queues

more Zone 1, priority requests to reduce Zone 1, urgent request wait times. This

result is explained by the proportion of requests arriving from Zone 1 (pz1 = 0.6314)

and the MEDEVAC unit service times for Zone 1.

Lastly, the optimality gaps between the baseline policies and the optimal policy are

examined. The expected total discounted reward for the optimal policy and baseline

policies when the system is in an empty state S0 = ((0, 0), (0, 0, 0, 0), (0, 0)) (i.e., both

MEDEVAC units are idle, every zone-precedence queue is empty, and there are no

9-line MEDEVAC requests in the system) are displayed in Table 10, along with the

optimality gaps associated with each baseline policy. The results indicate that the

best baseline policy is Myopic 2, which has the smallest optimality gap of 0.74%.

Without having the ability to queue any requests, the Myopic 3 policy performs

worse than every other policy and has the largest optimality gap of 5.73%. While

these optimality gaps may not seem large, over a long enough time period the optimal

policy will save more lives.
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Figure 8. Comparison of zone-precedence queue lengths

Table 10. Comparison of Total Expected Discounted Rewards & Optimality Gaps

Policy, π Jπ(S0) Optimality Gap
Optimal 63.50 N/A
Myopic 1 62.09 2.21%
Myopic 2 63.02 0.74%
Myopic 3 59.86 5.73%

5.3 Experimental Design

Since there are many parameters associated with the MEDEVAC system, a screen-

ing experiment is developed to reveal the parameters that significantly impact the

value of the optimal dispatching policy. Leveraging the results found from the 2× 2

case, a 25 full factorial screening experiment is generated to determine the relative

significance of factors λ, δ, ξ, pz1 , and pk1 . All five of these factors are important

59



MEDEVAC parameters of interest and have an initial screening design with low and

high factor levels. For example, the intensity in which 9-line MEDEVAC requests

arrive to the system, λ, is designed with low and high factor levels (e.g., 1
75

and 1
45

,

respectively) to determine if decreased or increased intensity of λ has a significant

impact on the value of the optimal dispatching policy.

The 25 full factorial screening experimental factors and the levels associated with

each factor are displayed in Table 11. Once the results from the 25 full factorial

screening experiment are examined, the factors that have a statistically significant

impact on the value of the optimal dispatching policy are analyzed via a three-level

experiment with low, intermediate, and high factor levels.

Table 11. 25 Full Factorial Screening Experimental Factor Levels

Factor Low Level High Level
λ 1

75
1
45

δ 5 15
ξ 0.1 0.3
pz1 0.25 0.75
pk1 0.25 0.75

5.4 Experimental Design Results

Table 12 reports the results from the 25 full factorial screening experiment. Start-

ing from the left, the first column indicates the run number. The second through

sixth columns indicate the factor levels. The rightmost column indicates the depen-

dent variable Jπ
∗
(S0), where Jπ

∗
(S0) is computed utilizing Equation (22) under the

optimal policy, π∗. Recall that S0 is the empty state (i.e., both MEDEVAC units

are idle, every zone-precedence queue is empty, and there are no 9-line MEDEVAC

requests in the system).

Multiple linear regression analysis is conducted to examine the relationship be-

tween the independent factors λ, δ, ξ, pz1 , and pk1 and the dependent variable Jπ
∗
(S0).
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Table 12. 25 Full Factorial Screening Experiment Results

Run # 1
λ

δ ξ pz1 pk1 Jπ
∗
(S0)

1 45 5 0.10 0.25 0.25 31.63
2 45 5 0.10 0.25 0.75 53.02
3 45 5 0.10 0.75 0.25 32.68
4 45 5 0.10 0.75 0.75 55.36
5 45 5 0.30 0.25 0.25 28.95
6 45 5 0.30 0.25 0.75 48.53
7 45 5 0.30 0.75 0.25 30.00
8 45 5 0.30 0.75 0.75 50.78
9 45 15 0.10 0.25 0.25 64.74
10 45 15 0.10 0.25 0.75 151.40
11 45 15 0.10 0.75 0.25 67.03
12 45 15 0.10 0.75 0.75 157.26
13 45 15 0.30 0.25 0.25 61.01
14 45 15 0.30 0.25 0.75 141.10
15 45 15 0.30 0.75 0.25 63.13
16 45 15 0.30 0.75 0.75 147.13
17 75 5 0.10 0.25 0.25 23.16
18 75 5 0.10 0.25 0.75 38.98
19 75 5 0.10 0.75 0.25 23.68
20 75 5 0.10 0.75 0.75 40.20
21 75 5 0.30 0.25 0.25 22.16
22 75 5 0.30 0.25 0.75 37.28
23 75 5 0.30 0.75 0.25 22.76
24 75 5 0.30 0.75 0.75 38.59
25 75 15 0.10 0.25 0.25 46.74
26 75 15 0.10 0.25 0.75 109.51
27 75 15 0.10 0.75 0.25 48.04
28 75 15 0.10 0.75 0.75 113.05
29 75 15 0.30 0.25 0.25 45.02
30 75 15 0.30 0.25 0.75 105.67
31 75 15 0.30 0.75 0.25 46.42
32 75 15 0.30 0.75 0.75 109.33

The results from the multiple linear regression analysis are displayed in Table 13.

Starting from the left, the first column lists the dependent factors. The second, third,

fourth, and fifth columns list the estimated coefficients (Coef), standard errors (SE),

test statistics (T), and p-values (P) associated with the dependent factors, respec-

tively.
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Table 13. Multiple Linear Regression Analysis

Factors Coef SE T P
Intercept -76.00 17.18 -4.42 < 0.00
λ 2201.80 673.03 3.27 < 0.00
δ 5.62 0.60 9.39 < 0.00
ξ -18.31 29.91 -0.61 0.55
pz1 4.57 11.97 0.38 0.71
pk1 92.51 11.97 7.73 < 0.00

The results from the multiple linear regression analysis in Table 13 report that the

p-values associated with factors λ, δ, and pk1 are all less than 0.01, which indicates

that these factors are statistically significant in predicting Jπ
∗
(S0). Intuitively, these

results make sense. The rate with which 9-line MEDEVAC requests arrive directly

impacts the number of requests that can be serviced, resulting in more/less opportu-

nity to earn rewards. Increasing or decreasing the weight and proportion of urgent

requests also directly impacts the amount of reward earned by the system. Moreover,

Table 13 reports the p-values associated with ξ and pz1 are both greater than 0.05 and,

therefore, do not provide enough evidence to assume that the factors ξ and pz1 are

statistically significant in predicting Jπ∗(S0). The reason that these factors are not

significant could be due to the selected experimental design factor levels. Selecting a

wider range in factor levels for ξ and pz1 could result in them becoming significant.

This model results in an adjusted R2 = 0.83, indicating an adequate fit but a reduced

model excluding factors ξ and pz1 is tested to see if a better model can be obtained.

Utilizing the results from Table 13, a 33 full factorial experiment is generated

to examine the differences between the optimal and baseline dispatching policies at

different levels for factors λ, δ, and pk1 . The goal of the 33 full factorial experiment

is to gain insight as to when medical planners should avoid implementing myopic

dispatching policies (e.g., Myopic 1, Myopic 2, and Myopic 3) and to understand how

the changes in the factor levels for λ, δ, and pk1 impact the optimal dispatching policy.
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The 33 full factorial experimental factors and the levels associated with each factor

are displayed in Table 14.

Table 14. 33 Full Factorial Experimental Factor Levels

Factor Low Level Intermediate Level High Level
λ 1

75
1
60

1
45

δ 5 10 15
pk1 0.25 0.50 0.75

Table 15 reports the results from the 33 full factorial experiment. Starting from

the left, the first column indicates the run number. The next three columns indicate

the factor levels. The fifth column indicates the dependent variable Jπ
∗
(S0), where

Jπ
∗
(S0) is computed utilizing Equation (22) under the optimal policy, π∗. The next

three columns indicate the optimality gaps for the Myopic 1, Myopic 2, and Myopic

3 policies, respectively. The following four columns indicate the MEDEVAC busy

probabilities when the system is operating under the optimal dispatching policy. The

four rightmost columns indicate the average zone-precedence queue lengths when the

system is operating under the optimal dispatching policy.

The results from Table 15 indicate that the Myopic 2 policy strictly outperforms

the Myopic 3 policy. Moreover, the Myopic 2 policy strictly outperforms the Myopic

1 policy when 1
λ
∈ {45, 60}, but not when 1

λ
= 75. These results indicate that medical

planners should never employ the Myopic 3 policy because there is always a better

policy to choose for any given set of parameter settings in Table 15. Additionally, the

Myopic 1 policy outperforms the Myopic 2 policy in several instances when 1
λ

= 75

because as the inter-arrival time of 9-line MEDEVACs increases it becomes more

beneficial to queue all requests versus just queueing urgent requests.

The MEDEVAC unit busy probabilities associated with each set of parameter

settings in Table 15 also provide interesting results. MEDEVAC 1 is busy servicing

Zone 1 requests substantially more than servicing Zone 2 requests for all 27 runs.
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Table 15. 33 Full Factorial Experimental Results

Optimality Gaps MEDEVAC 1 Busy MEDEVAC 2 Busy Average Queue Lengths
Run # 1

λ
δ pk1 Jπ

∗
(S0) Myopic 1 Myopic 2 Myopic 3 Zone 1 Zone 2 Zone 1 Zone 2 Qt11 Qt12 Qt21 Qt22

1 45 5 0.25 30.63 6.59% 1.05% 5.27% 0.21 0.04 0.17 0.14 0.02 0.03 0.01 0.04
2 45 5 0.5 41.38 7.11% 1.28% 5.77% 0.20 0.07 0.17 0.14 0.04 0.01 0.02 0.02
3 45 5 0.75 51.74 7.01% 2.93% 5.34% 0.21 0.04 0.14 0.15 0.05 0.00 0.06 0.00
4 45 10 0.25 47.25 6.55% 1.08% 7.39% 0.20 0.04 0.15 0.15 0.02 0.01 0.01 0.04
5 45 10 0.5 74.69 7.87% 2.56% 8.32% 0.20 0.06 0.11 0.14 0.03 0.00 0.02 0.00
6 45 10 0.75 99.92 7.40% 3.74% 6.73% 0.20 0.09 0.15 0.13 0.05 0.00 0.03 0.00
7 45 15 0.25 64.20 7.01% 1.61% 8.89% 0.20 0.03 0.05 0.16 0.01 0.00 0.01 0.03
8 45 15 0.5 108.30 8.41% 3.33% 9.55% 0.19 0.06 0.11 0.14 0.03 0.00 0.02 0.00
9 45 15 0.75 149.11 8.17% 4.68% 7.84% 0.17 0.08 0.13 0.11 0.04 0.00 0.02 0.00
10 60 5 0.25 26.49 1.41% 1.27% 4.47% 0.16 0.07 0.13 0.10 0.01 0.03 0.01 0.01
11 60 5 0.5 35.73 1.64% 0.58% 4.66% 0.16 0.04 0.12 0.11 0.02 0.01 0.01 0.02
12 60 5 0.75 44.85 1.64% 0.68% 4.50% 0.16 0.06 0.12 0.11 0.03 0.01 0.02 0.01
13 60 10 0.25 40.36 1.63% 0.71% 5.34% 0.16 0.02 0.11 0.11 0.01 0.02 0.01 0.03
14 60 10 0.5 63.50 2.21% 0.74% 5.73% 0.17 0.04 0.07 0.12 0.01 0.04 0.01 0.02
15 60 10 0.75 86.10 2.21% 1.11% 5.33% 0.16 0.06 0.10 0.11 0.03 0.00 0.02 0.00
16 60 15 0.25 54.38 2.02% 0.71% 6.03% 0.16 0.02 0.11 0.12 0.01 0.02 0.00 0.03
17 60 15 0.5 91.63 2.83% 1.21% 6.53% 0.16 0.04 0.07 0.11 0.01 0.00 0.01 0.00
18 60 15 0.75 127.54 2.54% 1.40% 5.75% 0.16 0.06 0.10 0.11 0.02 0.00 0.02 0.00
19 75 5 0.25 23.05 0.41% 1.40% 3.83% 0.13 0.05 0.09 0.09 0.01 0.02 0.00 0.01
20 75 5 0.5 31.04 0.41% 0.49% 3.79% 0.13 0.05 0.09 0.09 0.01 0.01 0.01 0.00
21 75 5 0.75 39.03 0.47% 0.28% 3.74% 0.13 0.04 0.09 0.09 0.02 0.00 0.01 0.01
22 75 10 0.25 34.90 0.38% 0.60% 4.05% 0.13 0.03 0.09 0.10 0.01 0.01 0.00 0.02
23 75 10 0.5 54.87 0.74% 0.35% 4.30% 0.13 0.03 0.08 0.09 0.01 0.01 0.01 0.01
24 75 10 0.75 74.62 0.77% 0.39% 4.14% 0.14 0.04 0.07 0.09 0.02 0.01 0.01 0.01
25 75 15 0.25 46.88 0.64% 0.48% 4.43% 0.13 0.02 0.08 0.09 0.00 0.01 0.00 0.02
26 75 15 0.5 78.87 1.09% 0.52% 4.72% 0.14 0.02 0.05 0.10 0.01 0.03 0.00 0.01
27 75 15 0.75 110.37 1.02% 0.58% 4.42% 0.13 0.04 0.07 0.09 0.01 0.00 0.01 0.00

MEDEVAC 2 is busy servicing each zone approximately the same. This result aligns

with intuition because the proportion of requests arriving from Zone 1 (pz1 = 0.6314)

is greater than the proportion of requests arriving from Zone 2 (pz2 = 0.3686).

Multiple linear regression analysis is conducted to confirm the statistically signif-

icant relationship between the independent factors λ, δ, and pk1 and the dependent

variable Jπ
∗
(S0). The results from the multiple linear regression analysis are displayed

in Table 16. Starting from the left, the first column lists the dependent factors. The

second, third, fourth, and fifth columns list the estimated coefficients (Coef), stan-

dard errors (SE), test statistics (T), and p-values (P) associated with the dependent

factors, respectively.

Table 16. Multiple Linear Regression Analysis

Factors Coef SE T P
Intercept -75.72 12.50 -6.06 < 0.00
λ 2145.60 571.74 3.75 < 0.00
δ 5.64 0.51 10.98 < 0.00
pk1 92.26 10.27 8.98 < 0.00
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The results from the multiple linear regression analysis in Table 16 show that the

p-vaules associated with factors λ, δ, and pk1 are all less than 0.01, which indicates

that these factors are statistically significant in predicting Jπ
∗
(S0). Moreover, this

model resulted in an adjusted R2 = 0.89, which is greater than the adjusted R2 = 0.83

computed from Table 13. This result indicates that the updated model with factors

λ, δ, and pk1 is better in predicting Jπ
∗
(S0) than the previous model with factors

λ, δ, ξ, pz1 , and pk1 .

An interesting observation found from the 33 full factorial experiment is that the

optimal dispatching policy aligns with the myopic policy when the MEDEVAC system

is in a Scenario 1 state for 26 out of the 27 runs. Table 17 reports the optimal and

baseline dispatching policies for the single run that the optimal dispatching policy

does not act myopically. The optimal dispatching policy will reject precedence level

two requests (i.e., priority requests) when the system is in a Scenario 1 state and

λ = 1
45
, δ = 15, and pk1 = 0.75. This result is intuitive because the inter-arrival times

of the requests have increased from one every 60 minutes to one every 45 minutes,

the immediate expected reward for servicing urgent requests is substantially higher

than servicing priority requests, and there is a much higher rate of urgent requests

arriving to the system rather than priority requests.

Table 17. Comparison of Dispatching Policies for Scenario 1

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2)* Reject
(2,1) Dispatch MEDEVAC 2
(2,2)* Reject

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2
Settings: λ = 1

45
, δ = 15, and pk1 = 0.75
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Tables 18, 19, and 20 display the average results for fixed λ–, δ–, and pk1– pa-

rameter values from Table 15. This aggregated information indicates how each factor

impacts the system performance metrics.

Table 18. Comparison of Average λ Performance Metrics

Optimality Gaps MEDEVAC 1 Busy MEDEVAC 2 Busy Average Queue Lengths
Run #’s 1

λ
Jπ
∗
(S0) Myopic 1 Myopic 2 Myopic 3 Zone 1 Zone 2 Zone 1 Zone 2 Qt11 Qt12 Qt21 Qt22

1-9 45 74.14 7.35% 2.47% 7.23% 0.20 0.06 0.13 0.14 0.03 0.01 0.02 0.01
10-18 60 63.40 2.01% 0.94% 5.37% 0.16 0.05 0.10 0.11 0.02 0.01 0.01 0.01
19-27 75 54.85 0.66% 0.57% 4.16% 0.13 0.04 0.08 0.09 0.01 0.01 0.01 0.01

Table 19. Comparison of Average δ Performance Metrics

Optimality Gaps MEDEVAC 1 Busy MEDEVAC 2 Busy Average Queue Lengths
Run #’s δ Jπ

∗
(S0) Myopic 1 Myopic 2 Myopic 3 Zone 1 Zone 2 Zone 1 Zone 2 Qt11 Qt12 Qt21 Qt22

1-3,10-12,19-21 5 35.99 2.97% 1.11% 4.60% 0.17 0.05 0.13 0.11 0.02 0.01 0.02 0.01
4-6,13-15,22-24 10 64.02 3.31% 1.26% 5.70% 0.17 0.04 0.10 0.12 0.02 0.01 0.01 0.01
7-9,16-18,25-27 15 92.36 3.75% 1.61% 6.46% 0.16 0.04 0.09 0.11 0.02 0.01 0.01 0.01

Table 20. Comparison of Average pk1
Performance Metrics

Optimality Gaps MEDEVAC 1 Busy MEDEVAC 2 Busy Average Queue Lengths
Run #’s pk1 Jπ

∗
(S0) Myopic 1 Myopic 2 Myopic 3 Zone 1 Zone 2 Zone 1 Zone 2 Qt11 Qt12 Qt21 Qt22

1,4,7,10,13,16,19,22,25 0.25 40.90 2.96% 0.99% 5.52% 0.17 0.04 0.11 0.12 0.01 0.02 0.01 0.02
2,5,8,11,14,17,20,23,26 0.50 64.45 3.59% 1.23% 5.93% 0.17 0.04 0.10 0.11 0.02 0.01 0.01 0.01
3,6,9,12,15,18,21,24,27 0.75 87.03 3.47% 1.76% 5.31% 0.16 0.06 0.11 0.11 0.03 0.00 0.02 0.00

The results from Table 18 indicate that, as the inter-arrival time of 9-line MEDE-

VAC requests decreases, the expected total discounted reward (i.e., Jπ
∗
(S0)) and the

optimality gaps between the optimal policy and the baseline polices increases. I.e.,

the myopic policies increasingly underperform the optimal policy as the frequency of

9-line MEDEVAC requests increases. The observed MEDEVAC busy probabilities

have the same patterns as mentioned in the description of the results for Table 15.

Moreover, the average urgent queue lengths are always greater than or equal to the

priority queue lengths.

The results from Table 19 indicate that as the ratio of urgent to priority immediate

expected reward decreases, the expected total discounted reward (i.e., Jπ
∗
(S0)) and

the optimality gaps between the optimal policy and the baseline polices increases.

The observed MEDEVAC busy probabilities have the same patterns as mentioned
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in the description of the results for Table 15. Moreover, the average urgent queue

lengths are always greater than or equal to the priority queue lengths.

The results from Table 20 indicate that as the proportion of urgent 9-line MEDE-

VAC requests increases, the expected total discounted reward (i.e., Jπ
∗
(S0)) increases.

However, this same pattern is not observed when comparing the optimality gaps. The

observed MEDEVAC busy probabilities have the same patterns as mentioned in the

description of the results for Table 15.

The average optimality gaps in Tables 18-20 indicate that the Myopic 2 policy

is the best myopic policy, on average. This results provides medical planners with

an easy-to-implement policy that performs fairly close to the optimal policy. This

is useful because the optimal policy may not be easy-to-implement or practical for

certain scenarios.

5.5 Excursion 1 - Request Arrival Rate

The section considers the impact that the arrival rate λ has on the optimal policy

when the MEDEVAC system is in a Scenario 1 state St ∈ ((0, 0), (0, 0, 0, 0), R̂t). The

same parameter settings from the 2 × 2 case are utilized for the request arrival rate

excursion except for λ; see Table 5 for a descriptive list of the parameters and the

settings associated with each one. The computational results indicate that the optimal

policy dispatches the closest MEDEVAC unit when the system is in a Scenario 1 state

with an urgent 9-line MEDEVAC request arrival (i.e., St ∈ ((0, 0), (0, 0, 0, 0), (z, 1))

where z ∈ {1, 2}), regardless of the request arrival rate λ. However, this same result

does not hold true for when the system is in a Scenario 1 state with a priority 9-line

MEDEVAC request arrival (i.e., St ∈ ((0, 0), (0, 0, 0, 0), (z, 2)) where z ∈ {1, 2}). The

dispatching policies for when the system is in a Scenario 1 state with a priority 9-line

request are displayed in Table 21.
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Table 21. Comparison of MEDEVAC Dispatching Policies for Priority Requests

Optimal Policy Myopic Policy
1
λ

R̂t = (1, 2) R̂t = (2, 2) R̂t = (1, 2) R̂t = (2, 2)
21 Reject Reject MEDEVAC 1 MEDEVAC 2
22 Reject Reject MEDEVAC 1 MEDEVAC 2
23 Reject Reject MEDEVAC 1 MEDEVAC 2
24 Reject Reject MEDEVAC 1 MEDEVAC 2
25 Reject Reject MEDEVAC 1 MEDEVAC 2
26 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2
27 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2
28 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2
29 MEDEVAC 1 MEDEVAC 2 MEDEVAC 1 MEDEVAC 2
30 MEDEVAC 1 MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

The results from Table 21 indicate that when 1
λ
≤ 25 the optimal policy is to

reject priority 9-line MEDEVAC requests, regardless of the zone where the request

originated from. For 1
λ
∈ {26, 27, 28} the optimal policy is to reject Zone 1 priority

9-line MEDEVAC requests and to dispatch MEDEVAC 2 to Zone 2 priority requests.

Lastly, when 1
λ
≥ 29 the optimal policy dispatches MEDEVAC units in a myopic

manner. These results indicate that the optimal policy reserves MEDEVAC units for

urgent requests as the inter-arrival time of 9-line MEDEVAC requests decreases.

5.6 Excursion 2 - MEDEVAC Flight Speed

This section considers the impact of replacing the currently fielded HH-60M MEDE-

VAC helicopter with a more efficient (i.e., faster flight speed) aeromedical aircraft.

The same parameter settings from the 2 × 2 case are utilized for the MEDEVAC

flight speed excursion; see Table 5 for a descriptive list of the parameters and the

settings associated with each one. The HH-60M MEDEVAC helicopter still utilizes

a power plant that was designed prior to 1989 (Leoni, 2007). There are significantly

faster experimental rotary wing aircraft that could potentially be put into service to

replace the HH-60M (Rettke et al., 2016). It is reasonable to assume new rotary wing
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aircraft designs have 25%-50% increased average flight speeds when compared to the

HH-60M MEDEVAC helicopter.

To examine the impact of employing new rotary wing aircraft, the mean of the

flight speed random variable is adjusted while all of the other random variables mod-

eling the MEDEVAC process remain the same. Incorporating this change leads to

immediate changes to response and service times, along with the immediate expected

reward. It is expected that as the mean flight speed increases, the optimal dispatching

policy will deploy MEDEVAC units in a more myopic fashion resulting in decreased

optimality gaps for the Myopic 1, Myopic 2, and Myopic 3 dispatching policies. More-

over, another interesting scenario examined is when the mean flight speed decreases,

which can occur due to potential maintenance issues or environmental issues within

the area of operations. With limited resources, it is reasonable to assume that slower

HH-60M MEDEVAC helicopters would still be utilized in a high intensity conflict.

Table 22 reports the results obtained by increasing and decreasing the mean flight

speed, where flight speed is indicated as a percentage increase over the flight speed

of the currently employed HH-60M MEDEVAC helicopter.

Table 22. MEDEVAC Helicopter Flight Speed Analysis

Optimality Gaps
Flight Speed Myopic 1 Myopic 2 Myopic 3
-50% 17.07% 7.95% 10.93%
-25% 5.02% 1.80% 6.56%
0%(i.e., current) 2.21% 0.74% 5.73%
25% 1.12% 0.37% 5.30%
50% 0.63% 0.24% 5.06%

As expected, the results from Table 22 indicate that as the mean flight speed of

the MEDEVAC helicopter increases, the optimality gaps for the Myopic 1, Myopic

2, and Myopic 3 policies all decrease. This shows that if a new rotary wing aircraft

is fielded for MEDEVAC purposes, then the optimal dispatching policy will deploy
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MEDEVAC units in a more myopic fashion. Moreover, the results indicate that as

the mean flight speed of the MEDEVAC helicopter decreases, the optimality gaps for

the Myopic 1, Myopic 2, and Myopic 3 policies all increase. This is an important ob-

servation. Military medical planners must take flight speed issues into consideration

when developing dispatching policies. These results should also persuade military

medical planners to consider changing dispatching policies during steady state com-

bat operations if the mean flight speed of the MEDEVAC helicopters being utilized

decreases due to atmospheric, environmental, or mechanical issues.

5.7 Excursion 3 - Intra-Zone Policies

This section considers the impact of replacing the MEDEVAC system’s inter-zone

policy with an intra-zone policy with regards to airspace access. The same parameter

settings from the 2×2 case and the MEDEVAC flight speed excursion are utilized for

the intra-zone policies excursion; see Table 5 for a descriptive list of the parameters

and the settings associated with each one. An intra-zone policy prevents MEDEVAC

units from operating in zones outside of the zone in which they are staged. Military

situations may arise that force strict adherence to an intra-zone policy. For example,

an execution of a specific, short-duration combat operation may enforce an intra-zone

policy to reduce the risk of collisions and fratricide (Keneally et al., 2016). Moreover,

when separate branches of the U.S. military (i.e., Army and Marines) and/or allied

countries are working together in a combat environment, perhaps for the first time, an

intra-zone policy restricting MEDEVAC units to serve their own zone may be enforced

due to chain of command, communication, and/or political realities (Keneally et al.,

2016).

To examine the impact of enforcing an intra-zone policy, each MEDEVAC unit

is restricted to operate in their own zone while all other random variables modeling
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the MEDEVAC process remain the same. The queueing strategies associated with

each baseline policy remain the same. Recall that when both MEDEVAC units are

busy the Myopic 1 policy queues all incoming requests, the Myopic 2 policy only

queues incoming urgent requests, and the Myopic 3 policy does not queue any in-

coming requests. Tables 23-25 report the dispatching policies associated with being

in Scenarios 1-3, respectively.

Table 23. Comparison of Intra-Zone Dispatching Policies for Scenario 1

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2) Dispatch MEDEVAC 1
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2

Regardless of the zone or precedence level of the incoming 9-line MEDEVAC

request, R̂t, all four policies react in a myopic fashion when the system is in Scenario

1, sending the closest MEDEVAC unit to service the request.

Table 24. Comparison of Intra-Zone Dispatching Policies for Scenario 2

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1

(2,1) Queue
(2,2) Reject

Myopic 1 (1,1) Dispatch MEDEVAC 1
(1,2) Dispatch MEDEVAC 1
(2,1) Queue
(2,2) Queue

Myopic 3 (1,1) Dispatch MEDEVAC 1
(1,2) Dispatch MEDEVAC 1
(2,1) Reject
(2,2) Reject
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Table 25. Comparison of Intra-Zone Dispatching Policies for Scenario 3

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Queue
Myopic 2 (1,2) Reject

(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2

Myopic 1 (1,1) Queue
(1,2) Queue
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2

Myopic 3 (1,1) Reject
(1,2) Reject
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2

Tables 23-25 indicate that the intra-zone optimal dispatching policy and the intra-

zone Myopic 2 dispatching policy (i.e., queue urgent) dispatch MEDEVAC units in

the same manner for Scenarios 1-3. Moreover, it is observed that when a MEDEVAC

is busy and a request from the MEDEVAC’s zone arrives to the system, the intra-

zone optimal dispatching policy always rejects priority requests from entering the

system. The difference between the intra-zone optimal dispatching policy and the

intra-zone Myopic 2 dispatching policy is observed when there is at least one urgent

9-line MEDEVAC request in the queue, the MEDEVAC unit able to service the urgent

queued request is busy, and there is an incoming request associated with that zone.

Many states satisfy this description. Let such states be denoted as Scenario 4 states.

Table 26 reports the dispatching policies associated with being in Scenario 4 when

either: MEDEVAC 1 is busy, there is an urgent Zone 1 MEDEVAC request in the

queue (i.e., Qt11 = 1) and a Zone 1 MEDEVAC request is submitted; or MEDEVAC

2 is busy, there is an urgent Zone 2 MEDEVAC request in the queue (i.e., Qt21 = 1),

and a Zone 2 MEDEVAC request is submitted.

Table 26 indicates that if the MEDEVAC system is in a Scenario 4 state, the

optimal policy will reject all incoming requests from the zone with the busy MEDE-
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Table 26. Comparison of Intra-Zone Dispatching Policies for Scenario 4

MEDEVAC 1 Busy & Qt11 = 1 MEDEVAC 2 Busy & Qt21 = 1

Policy R̂t Queue\Dispatch\Reject Queue\Dispatch\Reject
Optimal (1,1) Reject N/A

(1,2) Reject N/A
(2,1) N/A Reject
(2,2) N/A Reject

Myopic 1 (1,1) Queue N/A
(1,2) Reject N/A
(2,1) N/A Queue
(2,2) N/A Reject

Myopic 2 (1,1) Queue N/A
(1,2) Reject N/A
(2,1) N/A Queue
(2,2) N/A Reject

Myopic 3 (1,1) N/A N/A
(1,2) N/A N/A
(2,1) N/A N/A
(2,2) N/A N/A

VAC and the queued urgent request. Conversely, the intra-zone Myopic 2 policy will

queue all incoming urgent requests. While rejecting an urgent request may not align

with expectations, holding more than one request in the queue is detrimental due

to the MEDEVAC units being restricted to service only their own zones. If such a

decision is not desired by command authorities, the holding cost rate for urgent re-

quests should be updated to be less detrimental to system performance or the value of

servicing urgent requests should be increased to discourage rejecting urgent requests

from entering the system.

Figure 9 displays the long-run busy probabilities for each MEDEVAC unit. As

expected, the results from Figure 9 indicate that MEDEVAC 1 is busier than MEDE-

VAC 2, regardless of which intra-zone policy is utilized. These results occur because

the proportion of Zone 1 requests (pz1 = 0.6314) is greater than the proportion of

Zone 2 requests (pz2 = 0.3686).

Figure 10 displays the long-run average queue lengths for each zone-precedence
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Figure 9. Comparison of MEDEVAC busy probabilities

queue when the system is operating under intra-zone policies. As expected, the

average zone-precedence queue lengths for the optimal policy are strictly less than the

baseline averages for every zone-precedence queue. Another observation from Figure

10 is that the proportion of Zone 1 queued requests is greater that the proportion

of Zone 2 queued requests. Again, this can be explained due to the proportion of

Zone 1 requests (pz1 = 0.6314) being greater than the proportion of Zone 2 requests

(pz2 = 0.3686).

Lastly, the optimality gap between the intra-zone optimal policy and the intra-zone

baseline policies is examined. The expected total discounted reward for the intra-zone

optimal policy and intra-zone baseline policies when the MEDEVAC system is in State

S0 is displayed in Table 27, along with the optimality gaps associated with each intra-
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Figure 10. Comparison of zone-precedence queue lengths

zone baseline policy. The results indicate that the best intra-zone baseline policy is

Myopic 2, which has the smallest optimality gap of 7.45%. The intra-zone Myopic 1

policy performs worse than every other policy and has the largest optimality gap of

23.64%. These results indicate that when intra-policy restrictions are enforced then

the myopic dispatching policies substantially under-perform when compared to the

optimal policy. The 2×2 case optimality gaps displayed in Table 10 are substantially

less than the optimality gaps for the inter-zone policies. The Myopic 2 policy has

the best optimality gaps for both the 2× 2 case and the inter-zone policy excursion.

However, the optimality gap for the Myopic 2 policy in the 2×2 case is 0.74% whereas

the Myopic 2 optimality gap in the inter-zone policy excursion is 7.45%. Moreover,

there is an even large difference between the Myopic 1 policies (2.21% versus 23.64%).
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These results show that intra-zone policies perform substantially worse than inter-

zone policies.

Table 27. Comparison of Total Expected Discounted Rewards & Optimality Gaps

Policy, π Jπ
∗
(S0) Optimality Gap

Optimal 60.23 N/A
Myopic 1 45.99 23.64%
Myopic 2 55.74 7.45%
Myopic 3 54.69 9.25%

5.8 Excursion 4 - 3× 3 case

This section expands the 2 × 2 case by incorporating an additional zone and

MEDEVAC unit. For simplicity, the expanded 2 × 2 case is referred to as the 3 × 3

case. The 3× 3 case assumes that the southern region of Afghanistan is the AO and

is divided into three separate demand zones: Helmand province (Zone 1), Kandahar

province (Zone 2), and Zabol province (Zone 3). Three MEDEVAC units are con-

sidered with one being staged with a collocated MTF in Zone 1 (i.e., MEDEVAC

1), one being staged with a collocated MTF in Zone 2 (i.e., MEDEVAC 2), and one

being stage without a collocated MTF (i.e., MEDEVAC 3). The placement of the

MEDEVAC unit staging areas and MTFs in Zones 1 and 2 are the same as the 2× 2

case and the placement of the MEDEVAC unit staging area for Zone 3 represents a

general realism based on the historical trends in enemy activity in Zabol.

A list of parameters associated with the 3× 3 case are displayed in Table 28. Uti-

lizing the parameter settings in Table 28 and the expected response times, expected

service times, and immediate expected rewards computed for the 3×3 case (described

in detail in following paragraphs), the optimal policy is determined via policy iter-

ation. Applying Equation (5) reveals shows that the size of the state space for the

3× 3 case is 326,592. This is a substantial increase from the 2× 2 case (58,320).
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Table 28. 3× 3 Case Parameters

Parameter Description Setting
λ 9-line MEDEVAC request arrival rate 1

60

|M| Total # of MEDEVACs 3
|Z| Total # of zones 3
|K| Total # of precedence levels 2
qmax Max (z, k) queue length 2
γ Uniformized discount factor 0.99
δ Weight for urgent request 10
ξ Scale for holding cost rate 0.2
pz1 Zone 1 proportion of requests 0.5836
pz2 Zone 2 proportion of requests 0.3407
pz3 Zone 3 proportion of requests 0.0757
pk1 Urgent proportion of requests 0.5
pk2 Priority proportion of requests 0.5

Recall that Helmand and Kandahar are the two most war-related, fatality-producing

provinces in Afghanistan since the start of OEF with 956 and 558 KIA, respectively.

During this same period, 124 KIAs occurred in the Zabol province (White, 2016).

These numbers are utilized to determine the proportion of 9-line MEDEVAC requests

from each zone. Simple calculations yield that the proportion of requests coming from

Zone 1 is pz1 = 0.5836, the proportion of requests coming from Zone 2 is pz2 = 0.3407,

and the proportion of requests coming from Zone 3 is pz3 = 0.0757.

The 3 × 3 case assumes that the proportion of requests classified with an urgent

precedence level is pk1 = 0.5 and the proportion of requests classified with a priority

precedence level is pk2 = 1−pk1 = 0.5. Recall that the proportion of each request cat-

egorization pzk is found by multiplying the zone proportion with the precedence level

proportion (e.g., p11 = pz1pk1). Table 29 shows the 3× 3 case’s request categorization

proportions.

The 3 × 3 case utilizes the same procedures as the 2 × 2 case to model future 9-

line MEDEVAC requests and to compute expected response times, expected service

times, and immediate expected rewards.
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Table 29. Proportions of Zone-Precedence Level 9-Line MEDEVAC Requests

Zone, z Urgent Priority
1 (Helmand) 0.2918 0.2918
2 (Kandahar) 0.17035 0.17035
3 (Zabol) 0.03785 0.03785

Figure 11 depicts the three zones (i.e., Helmand, Kandahar, and Zabol) in south-

ern Afghanistan utilized to generate the data, as well as the MEDEVAC and MTF

locations. Recall that the MEDEVAC and MTF locations for Zones 1 and 2 are

collocated. These collocated MEDEVAC and MTF locations are represented by blue

stars. The location of the MEDEVAC unit without a collocated MTF is represented

by a blue square. The casualty cluster centers in each zone are represented by red

diamonds.

Figure 11. MEDEVAC and MTF locations with Casualty Cluster Centers
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Figure 12 illustrates several casualty events resulting in 9-line MEDEVAC re-

quests throughout southern Afghanistan within a 48-hour time period. The collo-

cated MEDEVAC and MTF locations are still represented by blue stars. Moreover,

the location of the MEDEVAC unit without a collocated MTF is still represented by

a blue square. The casualty events are represented by red circles.

Figure 12. Sampled Casualty Events in Helmand, Kandahar, and Zabol

Tables 30-32 respectively report the expected response times, expected service

times, and immediate expected rewards for the 3 × 3 case, computed utilizing the

model parameter values shown in Table 28.

The same three inter-zone baseline policies (i.e., Myopic 1, Myopic 2, Myopic 3)

from the 2× 2 case are utilized for comparison purposes. The dispatching policies for

the optimal policy and three baseline policies are compared in four separate scenarios.
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Table 30. Expected Response Times (minutes)

Zone, z MEDEVAC 1 MEDEVAC 2 MEDEVAC 3
1 (Helmand) 34.25 48.18 74.75
2 (Kandahar) 52.98 36.89 56.13
3 (Zabol) 102.25 83.91 57.54

Table 31. Expected Service Times (minutes)

Zone, z MEDEVAC 1 MEDEVAC 2 MEDEVAC 3
1 (Helmand) 34.25 67.28 120.31
2 (Kandahar) 72.13 36.89 83.26
3 (Zabol) 121.40 83.91 84.67

Table 32. Immediate Expected Reward

MEDEVAC, m
Zone, z Precedence, k 1 2 3
Zone 1 (Helmand) 1(Urgent) 5.65 4.48 2.88

2 (Priority) 0.87 0.82 0.73
Zone 2 (Kandahar) 1 (Urgent) 4.14 5.41 3.92

2 (Priority) 0.80 0.86 0.79
Zone 3 (Zabol) 1 (Urgent) 1.82 2.47 3.83

2 (Priority) 0.65 0.71 0.79

Each scenario (i.e., Scenarios 5-8) considers a set of MEDEVAC system states with

empty zone-precedence queues.

Scenario 5 considers a system wherein every MEDEVAC unit is idle, which can

be represented by St ∈ ((0, 0, 0), (0, 0, 0, 0, 0, 0), R̂t). The dispatching policies for

Scenario 5 are displayed in Table 33. An asterisk (*) is placed next to the incoming

requests, R̂t, that do not follow a myopic policy. The results indicate that when the

MEDEVAC system is in Scenario 5 the optimal policy reacts myopically for every

type of incoming request except for when R̂t = (1, 2) . The optimal policy dispatches

MEDEVAC 2 to service priority 9-line MEDEVAC requests originating from Zone 1

when all MEDEVAC units are idle and there are no queued requests. This indicates

that the optimal policy reserves MEDEVAC 1 for urgent 9-line MEDEVAC requests.

This aligns with expectations because Zone 1 has the highest proportion of 9-line
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MEDEVAC requests (pz1 = 0.5836).

Table 33. Comparison of Dispatching Policies for Scenario 5

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2)* Dispatch MEDEVAC 2
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3

Scenario 6 considers a set of MEDEVAC system states wherein MEDEVACs

1 and 2 are idle and MEDEVAC 3 is busy, which can be represented by St ∈

((0, 0, z), (0, 0, 0, 0, 0, 0), R̂t) where z ∈ {1, 2, 3}. The dispatching policies associated

with being in a Scenario 6 state are displayed in Table 34. The results indicate that

the best MEDEVAC unit to dispatch to service a 9-line MEDEVAC request does

not depend on the zone in which the busy MEDEVAC (i.e., MEDEVAC 3) is cur-

rently servicing when the system is in a Scenario 6 state. Moreover, the MEDEVAC

system reacts in a myopic fashion for every incoming 9-line MEDEVAC request ex-

cept for when R̂t = (3, 2). The optimal policy queues 9-line MEDEVAC requests

when St ∈ ((0, 0, z), (0, 0, 0, 0, 0, 0), (3, 2)), z = 1, 2, 3 (i.e., MEDEVACs 1 and 2 are

idle, MEDEVAC 3 is busy, there are no queued requests, and a request originates

from Zone 3 with a priority precedence level). This shows the optimal policy re-

serves MEDEVAC 2 for 9-line requests originating from its own zone or urgent 9-line

MEDEVAC requests from Zone 3.

Scenario 7 considers a set of MEDEVAC system states wherein MEDEVACs

1 and 3 are idle and MEDEVAC 2 is busy, which can be represented by St ∈
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Table 34. Comparison of Dispatching Policies for Scenario 6

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2) Dispatch MEDEVAC 1
(2,1) Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 2
(3,2)* Queue

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 2
(3,2) Dispatch MEDEVAC 2

((0, z, 0), (0, 0, 0, 0, 0, 0), R̂t) where z ∈ {1, 2, 3}. The dispatching policies associated

with being in a Scenario 7 state are displayed in Table 35. The results indicate that

the best MEDEVAC unit to dispatch to service a 9-line MEDEVAC request does not

depend on the zone in which the busy MEDEVAC (i.e., MEDEVAC 2) is currently

servicing when the system is in State 3. Moreover, the MEDEVAC system reacts

in a myopic fasion for every incoming 9-line MEDEVAC request except for when

R̂t = (2, 2). The optimal policy dispatches MEDEVAC 3 to service 9-line MEDE-

VAC requests when St = ((0, z, 0), (0, 0, 0, 0, 0, 0), (2, 2)), z = 1, 2, 3 (i.e., MEDEVACs

1 and 3 are idle, MEDEVAC 2 is busy, there are no queued requests, and a request

originates from Zone 2 with a priority precedence level). This shows the optimal pol-

icy reserves MEDEVAC 2 for 9-line requests originating from its own zone or urgent

9-line MEDEVAC requests from Zone 2.

Scenario 8 considers a set of MEDEVAC system states wherein MEDEVACs

2 and 3 are idle and MEDEVAC 1 is busy, which can be represented by St ∈

((z, 0, 0), (0, 0, 0, 0, 0, 0), R̂t) where z ∈ {1, 2, 3}. The dispatching policies associated

with being in a Scenario 8 state are displayed in Table 36. Unlike the policies from

Scenarios 6 and 7, the results indicate that the best MEDEVAC unit to dispatch
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Table 35. Comparison of Dispatching Policies for Scenario 7

Policy R̂t Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 1

(1,2) Dispatch MEDEVAC 1
(2,1) Dispatch MEDEVAC 1
(2,2)* Dispatch MEDEVAC 3
(3,1) Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3

Myopic 1 (1,1) Dispatch MEDEVAC 1
Myopic 2 (1,2) Dispatch MEDEVAC 1
Myopic 3 (2,1) Dispatch MEDEVAC 1

(2,2) Dispatch MEDEVAC 1
(3,1) Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3

to service a 9-line MEDEVAC request does depend on the zone in which the busy

MEDEVAC (i.e. MEDEVAC 1) is currently servicing when the system is in a Scenario

8 state. The optimal dispatching policy for R̂t = (1, 2) depends on z, the zone where

MEDEVAC 1 is currently servicing a request. If MEDEVAC 1 is servicing Zone 1

(i.e., z = 1) and R̂t = (1, 2), then the optimal decision is to dispatch MEDEVAC

2 to service the request. If MEDEVAC 1 is servicing either Zone 2 or Zone 3 (i.e.,

z = 2 or z = 3, respectively) and R̂t = (1, 2), then the optimal decision is to dispatch

MEDEVAC 3 to service the request. Recall that the service time of MEDEVAC 1

servicing Zone 1 is 34.25 minutes, which is substantially less than when MEDEVAC

1 is servicing Zone 2 (67.28 minutes) or Zone 3 (120.31 minutes). The optimal policy

reserves MEDEVAC 2 when MEDEVAC 1 is servicing either Zone 2 or Zone 3 because

of these long service times.

The optimality gap between the optimal policy and the baseline policies is ex-

amined. The expected total discounted reward for the optimal policy and baseline

policies when the system is in an empty state S0 = ((0, 0, 0), (0, 0, 0, 0, 0, 0), (0, 0))

(i.e., empty queues, idle MEDEVACs, no incoming 9-line MEDEVAC requests) are

displayed in Table 37, along with the optimality gaps associated with each baseline
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Table 36. Comparison of Dispatching Policies for Scenario 8

MEDEVAC 1 Servicing Zone 1 MEDEVAC 1 Servicing Zone 2 MEDEVAC 1 Servicing Zone 3

Policy R̂t Queue\Dispatch\Reject Queue\Dispatch\Reject Queue\Dispatch\Reject
Optimal (1,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(1,2)* Dispatch MEDEVAC 2 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3
(2,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
(2,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 3 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3

Myopic 1 (1,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
Myopic 2 (1,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
Myopic 3 (2,1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(2,2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2 Dispatch MEDEVAC 2
(3,1) Dispatch MEDEVAC 3 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3
(3,2) Dispatch MEDEVAC 3 Dispatch MEDEVAC 3 Dispatch MEDEVAC 3

policy. The results indicate that the best baseline policy is Myopic 2, which has the

smallest optimality gap of 3.48%. Without having the ability to queue any requests,

the Myopic 3 policy performs worse than every other policy and has the largest op-

timality gap of 5.79%.

Table 37. Comparison of Total Expected Discounted Rewards & Optimality Gaps

Policy, π Jπ(S0) Optimality Gap
Optimal 56.41 N/A
Myopic 1 54.04 4.19%
Myopic 2 54.44 3.48%
Myopic 3 53.14 5.79%

5.9 Policy Iteration versus Linear Programming

This section compares the computational efficiency between policy iteration via

MATLAB and linear programming (LP) via CPLEX for the MEDEVAC dispatching

problem. Since each solution algorithm determines the optimal dispatching policy,

the focus of the analysis is on how long it takes each algorithm to solve. Comparisons

are made on the same computer and on the same problem instances after they have

been loaded into memory. The problem instances are generated by adjusting the qmax

parameter in the 2 × 2 case. Table 38 reports the total time in seconds required to

find the optimal policy for each algorithm, and Figure 13 depicts the results from
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Table 38 to visually show the differences in computational time.

Table 38. Policy Iteration versus Linear Programming Computational Efficiency (s)

|S| Policy Iteration CPLEX (Dual) CPLEX (Primal)
720 0.03 0.07 1.17
3645 0.10 0.47 4.26
11520 0.35 3.13 38.15
28125 1.04 13.32 196.50
58320 2.23 55.74 656.16
108045 5.12 134.03 1981.55
184320 10.91 216.66 4782.90
295245 17.37 309.83 9754.49
450000 47.86 412.66 17037.00

Figure 13. Policy Iteration vs Linear Programming

The results from Table 38 and Figure 13 indicate that solving the MEDEVAC

dispatching problem with CPLEX utilizing a primal simplex optimizer is substantially
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worse than solving the problem with either policy iteration or CPLEX utilizing a dual

simplex optimizer. Figure 14 excludes the results from CPLEX utilizing a primal

simplex optimizer to provide a better visual comparison of policy iteration versus

CPLEX utilizing a dual simplex optimizer.

Figure 14. Policy Iteration vs Linear Programming

The results from Figure 14 indicate that policy iteration substantially outperforms

CPLEX even when the more theoretically appropriate dual simplex optimizer is uti-

lized. Moreover, the results from Table 38, Figure 13, and Figure 14 show that the

gaps between each algorithm increase as |S| increases, indicating that larger, small-

scale problems (i.e., ones that can still be solved to optimality) should be solved via

policy iteration. These results comport with the findings of Puterman (1994) and

Powell (2011).
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LP problems can be stated in primal or dual form. Moreover, the optimal solu-

tion (if one exists) of the dual has a direct relationship to an optimal solution of the

primal LP model. The dual simplex optimizer in CPLEX takes advantage of this

relationship, but still reports the solution to a given problem in terms of the primal

model. For the primal LP model of the MDP, the number of rows (i.e., inequality con-

straints) is equal to |S| × Π
St∈S
|X (St)| (i.e., the number of state-action combinations).

The number of columns (i.e., the number of variables) is equal to |S|. Modern LP

solvers can handle problems with tens of thousands of constraints without difficulty

(Powell, 2011). Based on the sizes of the state and action space, it may be more

efficient to solve the problems utilizing the dual formulation of the LP model result-

ing in |S| rows and |S| × Π
St∈S
|X (St)| columns in the constraint matrix. Despite the

greatly increased computational efficiency in LP algorithms reported in Bixby (2012),

the results from this analysis indicate that policy iteration substantially outperforms

LP via CPLEX (for both primal and dual simplex optimizers) for the MEDEVAC

dispatching problem.
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VI. Conclusion

This thesis examines the medical evacuation (MEDEVAC) dispatching problem.

The objective of this research is to determine how to optimally dispatch MEDEVAC

units to 9-line MEDEVAC requests to improve the performance of a deployed med-

ical service system and ultimately maximize battlefield casualty survivability rates.

A discounted, infinite horizon Markov decision process (MDP) is developed to en-

able examination of many different military medical planning scenarios. The MDP

model incorporates admission control and queueing, which allows the dispatching au-

thority to accept, reject, or queue incoming 9-line MEDEVAC requests based on the

request’s classification (i.e., zone and precedence level) and the state of the MEDE-

VAC system. Rejected requests are not simply discarded; rather, they are redirected

to another servicing agency, such as casualty evacuation (CASEVAC), to be serviced.

The MDP model also accounts for the severity of each call (i.e., urgent and priority)

and applies a survivability function that is monotonically decreasing in response time

to model the outcome of casualties. While response time thresholds (RTTs) are typ-

ically utilized to measure system performance for emergency medical systems, this

thesis measures performance in terms of casualty survivability since survival proba-

bility more accurately mirrors casualty outcomes. To demonstrate the applicability

of the MDP model and to examine the behavior of the optimal dispatching policy,

a notional military planning scenario based on contingency operations in southern

Afghanistan is developed. A series of sensitivity analyses and computational excur-

sions identify the model parameters that significantly impact the optimal dispatching

policy. Moreover, this thesis compares the computational efficiency of policy iter-

ation via MATLAB versus linear programming via CPLEX, utilizing either of two

embedded simplex implementation methodologies

The immediate expected reward obtained from servicing a specific 9-line MEDE-
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VAC request depends on the locations of the request and the servicing MEDEVAC

unit’s staging area, along with the precedence level of the request. The total holding

cost that the MEDEVAC system incurs during each state transition depends on the

total number of queued requests and the precedence level of each queued request in

the MEDEVAC system. Decisions are made when either a 9-line MEDEVAC request

is submitted to the system or when a MEDEVAC unit finishes servicing a request.

The dispatching authority examines the entire state of the MEDEVAC system when

a decision is required.

Results indicate that dispatching the closest available MEDEVAC unit (i.e., a

myopic policy) is not always optimal. Instead, dispatching MEDEVAC units consid-

ering the entire MEDEVAC system state (i.e., the MEDEVAC units’ status, number

and precedence level of queued requests, and location and precedence of the incom-

ing request) increases the casualty survivability. The optimality gaps between the

myopic policies examined and the optimal policy range between 0.74% and 5.73%

when inter-zone polices are allowed and 7.45% and 23.64% when intra-zone polices

are enforced. Over a protracted conflict, these policies will substantially decrease the

survivability rates of battlefield causalities, and, therefore, implementation of optimal

policies should be considered by medical planners. Myopic policies are often utilized

in military practice because they are relatively easy to implement and they perform

fairly well as long as the arrival of 9-line MEDEVAC requests occur less frequently.

Of the myopic policies tested, the Myopic 2 policy performs the best in both the

2 × 2 case and 3 × 3 case with optimality gaps of 0.74% and 3.48%, respectively.

Moreover, results confirm the criticality of the MEDEVAC helicopter’s flight speed.

Current flight speeds can decrease due to atmospheric, environmental, or mechani-

cal issues. If these problems arise during combat operations and degrade the flight

speed of the MEDEVAC helicopters, then myopic policies perform even worse when
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compared to the optimal policy. For example, if the current flight speeds of MEDE-

VAC helicopters decrease by 50%, a myopic policy that queues all requests when no

MEDEVAC units are available has a 17.07% optimality gap, which is substantially

more than the baseline optimality gap of 2.21%. These results suggest that medical

planners should consider changing dispatching policies during combat operations if

one or more of these problems arise and negatively impact the flight speed of the

MEDEVAC helicopters being utilized. Conversely, current flight speeds can increase

if new rotary wing aircraft are employed in combat operations. If this were to occur,

initial results indicate that as the flight speed increases, the performance gap between

myopic policies and the optimal policy decreases. For example, if the current flight

speeds of MEDEVAC helicopters increases by 50%, a myopic policy that queues only

urgent requests when no MEDEVAC units are available only has a 0.24% optimality

gap, which is substantially less than the baseline optimality gap of 0.74%. This com-

parison informs current MEDEVAC helicopter designs and development and provides

promising results in terms of saving lives with a faster MEDEVAC helicopter.

The research presented in this thesis is of interest to both military and civilian

medical planners and dispatch authorities. Medical planners can apply the MDP

model developed to compare different dispatching policies for a variety of planning

scenarios with fixed medical treatment facility (MTF) and MEDEVAC staging (i.e.,

hospital and ambulance for civilian sector) locations. Moreover, medical planners

can evaluate different location schemes for the medical assets (e.g., MTFs, hospitals,

MEDEVACs, and ambulances) to maximize the overall performance of the medical

system.

One limiting assumption associated with the MDP model developed is that MEDE-

VAC units are required to return to their own staging areas to refuel and replenish

medical supplies after unloading casualties at an MTF prior to servicing a queued
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request. During combat operations, there are typically bases that have collocated

MEDEVAC units and MTFs. It is reasonable to assume that MEDEVAC units

staged in different zones can refuel and replenish medical supplies at these locations

and immediately proceed to servicing a queued request instead of having to return

back to their own staging areas first. The MDP model restricts MEDEVAC units from

refueling at different locations as a simplifying assumption. Modifying the problem

formulation and the corresponding MDP model to allow for refueling, replenishing of

supplies, and the ability to immediately service queued requests after casualty deliv-

ery at an MTF with a collocated MEDEVAC unit would certainly reduce the response

time for many 9-line MEDEVAC requests. This modification is a planned extension

for future research.

Another insight drawn from this thesis is that the computational difficulty in

solving the MEDEVAC dispatching problem increases substantially as the size of the

state space grows. The computational efficiency of policy iteration via MATLAB is

compared to linear programming (LP) via CPLEX. The results reveal that, although

great strides have been accomplished in improving the performance of LP algorithms,

policy iteration still outperforms LP algorithms by a substantial amount. Neverthe-

less, as the size of the state space grows exponentially, the use of exact dynamic

programming techniques becomes intractable. This makes more realistic, large-scale

problem instances impossible to analyze via exact algorithms. A planned extension to

this work involves incorporating several approximate dynamic programming (ADP)

algorithms to resolve the well known curse of dimensionality issue. While the repre-

sentative scenario analyzed is not of a large-scale scenario, important insights are still

drawn concerning the differences between the optimal policy and standard myopic

policies utilized today. These insights should be taken into consideration by military

medical planners and utilized when planning for major combat operations.
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